Table of Contents

Contents .. i

Safety Information .. 1

Using This Manual ... 3

Quick Reference .. 5

Section 1: General Information .. 7
 - Internal Battery Pack .. 9
 - Turning On/Off, and Emergency Shutdown .. 9
 - Turning On .. 9
 - Turning Off ... 9
 - Emergency Shutdown ... 10
 - Configure Shortcut (S) Button .. 11
 - Advanced (menu selection) .. 11

Camera (Taking Pictures) ... 11
 - Using the Camera ... 11
 - Viewing Pictures .. 12

Windows (Applicable Features / Operations) .. 12
 - Wi-Fi Setup ... 12
 - Windows Taskbar .. 14
 - Windows Taskbar Notification Area ... 14
 - Touch Screen and Stylus ... 14
 - Sleep Mode (Auto Off Display) ... 15
 - E-Mail Client Setup ... 16
 - Calibrating the Touch Screen .. 18
 - Printing / Printer Setup .. 19

Section 2: Scanner Demonstration ... 24
 - Demonstration Modes .. 24

Section 3: Getting Started - Diagnostic Suite Program ... 29
 - The ShopStream Diagnostic Suite Program .. 29
 - Home Screen Layout .. 29
 - Function Icons .. 30

Section 3: Getting Started - Diagnostic Suite Program ... 29
 - The ShopStream Diagnostic Suite Program .. 29
 - Home Screen Layout .. 29
 - Function Icons .. 30

Section 4: Compact Scan Module (CSM) .. 33
 - Power Source ... 33
 - LED Indicators ... 34
 - Audible Alerts .. 34
 - LED Flashlight (built-in) ... 34
 - Basic Operation ... 34
 - Connecting the CSM ... 34
 - Pairing and Hardware Status Icons ... 36
 - Firmware Updates ... 38
 - Troubleshooting .. 39
 - Error Messages ... 40
 - Out of Range Alarm ... 40
 - Loss of Connection - Recovery Procedures ... 40
 - Technical Specifications ... 41

Section 5: Scanner ... 42
 - Basic Operation ... 42
 - Scanner Overview ... 42
 - Basic Scanner Operation (Quick Start) .. 43
 - Identifying the Vehicle ... 43
 - Selecting a Vehicle System ... 44
 - Selecting a Vehicle System Test/Function ... 45
 - Exiting Scanner ... 46
 - Menu Options (lower toolbar icon) ... 47
 - File .. 47
 - Tools ... 47
 - Help .. 48
 - Codes Menu (Viewing Codes) ... 48
 - Display Codes (Code List) ... 48
 - Clear Codes ... 49
 - Freeze Frame/Failure Record Data .. 49
 - Code Scan (with Vehicle System Report) ... 49
 - Saving the Vehicle System Report .. 52
 - Edit Vehicle System Report Shop Information ... 52

Menu Icon .. 31
 - Help .. 31
 - Changing the Units of Measurement .. 32

Changing the Units of Measurement .. 32

Troubleshooting ... 39
 - Error Messages ... 40
 - Out of Range Alarm ... 40
 - Loss of Connection - Recovery Procedures ... 40

Technical Specifications .. 41
Contents

- Hide / Show Vehicle System Report Timestamp ..52
- Printing the Vehicle System Report ..52
- Clear All Codes Read by Code Scan ..54
- Service Resets and Relearns ..54
- Data (Viewing PID)...55
 - Data Screen Overview..55
 - Using Triggers ..65
- Functional Tests ...69
 - Functional Resets and Procedures ...70
- Generic Functions ...71
- Troubleshooter ..71

Section 6: Intelligent Diagnostics ...72
- Main Topic Links ...72
- Accessing Intelligent Diagnostics ...72
- Main Menu and Basic Navigation ...73
- Code Results Dropdown Menu ..74
- Top Repairs Graph ...75
- Technical Bulletins (OEM Information) ..75
- Smart Data ..76
 - About Prearmed Smart Data PID ..77
- Functional Tests and Reset Procedures ..77
- Guided Component Tests (GCTs) ..78
- Real Fixes ...80
- Troubleshooter ..80
- Repair Information ...80

Section 7: OBD Direct ..81
- Main Menu ..81
- OBD Diagnose ...81
 - Start Communication ..81
 - Connector Information ...84
 - Manual Protocol Selection ...84
- OBD Health Check ...84
 - Global OBD II Code Check ...84
 - Global OBD II Clear Codes ...85

Section 8: Guided Component Tests ...86
- Safety Information ...86

Section 9: Scope and Multimeter Operations ...94
- Main Topics Links ...94
- Technical Specifications
 - (Scope Module) ..95
 - Tests and Capabilities (Quick Reference) ..96
 - Digital Multimeter (DMM) ...98
 - Graphing Multimeter (GMM) ...98
 - Lab Scope ..99
- Getting Started ..100
 - Selecting a Function ...100
 - Test Lead / Probe Connection ..100
 - Using the Scope Module Extension Cable ...101
 - Pairing and Hardware Status Icons ..102
 - Test Lead / Probe Calibration ..103
- Main Screen and Toolbars
 - Scope/Meter (Upper Toolbar) ...104
 - Main Body of the Screen ..105
- Setup Menu (Preferences) ..105
 - Trace Controls Menu ..105
 - Trigger Setup Menu ...106
 - View Controls ..106
 - Setup Controls ..110
- Control Panel and Settings ..111
 - Display Modes ..111
 - Control Panel (Trace Controls Quick Reference)112
 - Profile Icon ...113
 - Channel Icon ...113
 - Probe Icon ..113
 - Peak Detect Icon ...114
 - Filter Icon ..115
READ ALL INSTRUCTIONS

For your own safety, the safety of others, and to prevent damage to the product and vehicles upon which it is used, it is important that all instructions and safety messages in this manual and the accompanying Important Safety Instructions manual be read and understood by all persons operating, or coming into contact with the product, before operating. We suggest you store a copy of each manual near the product in sight of the operator.

For your safety, read all instructions. Use your diagnostic tools only as described in the tool user’s manual. Use only manufacturer recommended parts and accessories with your diagnostic tools.

This product is intended for use by properly trained and skilled professional automotive technicians. The safety messages presented throughout this manual and the accompanying Important Safety Instructions manual are reminders to the operator to exercise extreme care when using this product.

There are many variations in procedures, techniques, tools, and parts for servicing vehicles, as well as in the skill of the individual doing the work. Because of the vast number of test applications and variations in the products that can be tested with this instrument, we cannot possibly anticipate or provide advice or safety messages to cover every situation. It is the responsibility of the automotive technician to be knowledgeable of the system being tested. It is essential to use proper service methods and test procedures. It is important to perform tests in an appropriate and acceptable manner that does not endanger your safety, the safety of others in the work area, the equipment being used, or the vehicle being tested.

It is assumed that the operator has a thorough understanding of vehicle systems before using this product. Understanding of these system principles and operating theories is necessary for competent, safe and accurate use of this instrument.

Before using the equipment, always refer to and follow the safety messages and applicable test procedures provided by the manufacturer of the vehicle or equipment being tested. Use the product only as described in it’s user manual. Use only manufacturer recommended parts and accessories with your product.

Read, understand and follow all safety messages and instructions in this manual, the accompanying Important Safety Instructions manual, and on the test equipment.

Environmental Conditions:
- This product is intended for indoor use only
- This product is rated for Pollution Degree 2 (normal conditions)

Safety Signal Words

All safety messages contain a safety signal word that indicates the level of the hazard. An icon, when present, gives a graphical description of the hazard. Safety Signal words are:

⚠️ DANGER
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury to the operator or to bystanders.

⚠️ WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to the operator or to bystanders.

⚠️ CAUTION
Indicates a potentially hazardous situation which, if not avoided, may result in moderate or minor injury to the operator or to bystanders.
Safety Message Conventions

Safety messages are provided to help prevent personal injury and equipment damage. Safety messages communicate the hazard, hazard avoidance and possible consequences using three different type styles:

- Normal type states the hazard.
- **Bold type states how to avoid the hazard.**
- *Italic type states the possible consequences of not avoiding the hazard.*

An icon, when present, gives a graphical description of the potential hazard.

Safety Message Example

⚠️ WARNING

Risk of electric shock.

- **Prior to recycling the battery pack, protect exposed terminals with heavy insulating tape to prevent shorting.**
- **Disconnect all test leads and turn diagnostic tools off before removing the battery pack.**
- **Do not attempt to disassemble the battery or remove any component projecting from or protecting the battery terminals.**
- **Do not expose the diagnostic tool or battery pack to rain, snow, or wet conditions.**
- **Do not short circuit the battery terminals.**

Electric shock can cause injury.

Important Safety Instructions

For a complete list of safety messages, refer to the accompanying *Important Safety Instructions manual.*
Using This Manual

This manual contains basic operating instructions and is structured in a manner to help you become familiar with your diagnostic tool features and perform basic operations.

The illustrations in this manual are intended as reference only and may not depict actual screen results, information, functions or standard equipment. Contact your sales representative for availability of other functions and optional equipment.

For information on navigating through this manual on the diagnostic tool, see Training and Support on page 173.

Page Navigation Controls

The following navigation controls are provided on the top of each page of the user manual. They can be used in addition to the viewer controls in the toolbar.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Links Menu</td>
<td>Opens the Quick Links menu within the Table of Contents (TOC) section. From Quick Links you can link to most topics in this manual.</td>
</tr>
<tr>
<td>Jump Back</td>
<td>Click to move back one page.</td>
</tr>
<tr>
<td>Jump Forward</td>
<td>Click to move forward one page.</td>
</tr>
</tbody>
</table>

Conventions

Hyperlinks

Hyperlinks (links) are identified by blue colored text, and take you to other related content or websites (must be connected to the Internet to link to websites).

Example:

Before using the diagnostic tool, make sure the battery is fully charged, or is connected to the AC power adapter. See Power (Battery Pack/Charging) on page 9.

Procedures

An arrow icon indicates a procedure.

Example:

To change screen views:

1. Select View.
 - The dropdown menu displays.
2. Select an option from the menu.
 - The screen layout changes to the format you selected.

Bold Text

Bold emphasis is used in procedures to highlight selectable items such as buttons and menu options.

Example:

- Select Functions.
Symbols
The “greater than” arrow (>) indicates an abbreviated set of selection instructions.
Example:
• Select Utilities > Tool Setup > Date.
The above statement abbreviates the following procedure:
 1. Select the Utilities icon.
 2. Select the Tool Setup submenu.
 3. Highlight the Date option from the submenu.

Terminology
The term “select” describes tapping/touching an icon on the touch screen, or
highlighting an icon or menu choice and then selecting the confirmation menu
choice such as Continue, Accept, OK, Yes, or other similar choice.
Example:
• Select Reset.
The above statement abbreviates the following procedure:
 1. Navigate to the Reset icon.
 2. Select the Reset icon with your stylus.

Notes and Important Messages
The following messages are used.

Note
A note provides helpful information such as additional explanations, tips, and
comments.
Example:

NOTE
For additional information refer to...

Important
Important indicates a situation which, if not avoided, may result in damage to the
test equipment or vehicle.
Example:

IMPORTANT
Disconnecting the USB cable during vehicle communication can cause
damage to the ECM.
Introduction
For your convenience this section provides product support information, quick reference links to each section, and general reference information.

Main Topic Links
- Support Contact Information page 5
- SureTrack page 6
- Secure Vehicle Gateway page 6
- Accessories page 6

Quick Links
Click on an icon below to go to that section.

Support Contact Information

Phone / E-mail - Technical Assistance
1-800-424-7226 / diagnostics_support@snapon.com
or use our online contact form
snapon.com/diagnostics/us/Contact

Website Links:
Snap-on Diagnostics and Information
- diagnostcs.snapon.com

Manuals / Technical Documentation - The information in this manual is periodically revised to ensure the latest information is included. Download the latest version of this manual and other related technical documentation at:
- diagnostcs.snapon.com/usermanuals

Information Services
The following integrated services provide up-to-date service/repair information directly to your diagnostic tool, via wireless network connection from our Snap-on Web Services Network:
- Intelligent Diagnostics
- SureTrack®
- Technical Service Bulletins (TSBs) (within Quick Lookups)
- Oil Specs and Resets (within Quick Lookups)

If your access to these services has expired, or you have received messages about upcoming software upgrades or pending expiration, contact your sales representative.

NOTE
Performance varies depending on your wireless network equipment and ISP.
SureTrack

Using SureTrack for the First Time

If you have purchased a new diagnostic tool, you will need to create a SureTrack account before you can access SureTrack. See Creating a SureTrack Account on page 186 for instructions.

Reactivating SureTrack

If you have recently purchased a software upgrade, you will need to reactivate your account to access SureTrack. See Getting Started and Logging In on page 183 for instructions.

The Snap-on® Cloud

Using the Snap-on Cloud allows you to upload, store and share code scan reports, screenshots and pictures taken with your diagnostic tool. For more on the Snap-on Cloud, see The Snap-on® Cloud on page 200.

Secure Vehicle Gateway

IMPORTANT

To protect against unauthorized vehicle network manipulation that may put car systems and customers at risk, many automobile manufacturers require authorized scan tool access to perform necessary diagnosis and repair. To learn more about how to connect this diagnostic tool to vehicles using a secured gateway visit www.snapon.com/gateway

Product Training Videos

Product specific training videos and support is available on our website. Learn the basics of diagnostic tool operation with our free training videos, and watch our Quick Tips videos to see how to use your diagnostic tool to solve common vehicle problems.

Website URL - diagnostics.snapon.com/FAQ.htm

Common Abbreviations Used

CSM - Compact Scan Module
CTM - Component Test Meter (Guided Component Tests)
DLC - Data Link Connector (vehicle)
DMM - Digital Multimeter
ECM - Electronic Control Module
GCT - Guided Component Tests
GMM - Graphing Multimeter
SSC - ShopStream Connect™
SST - ShopStream® Update Tool
VIN - Vehicle Identification Number

Accessories

Find diagnostic tool accessories using our Interactive Accessories Catalog: visit diagnostics.snapon.com and enter “accessories catalog” in the Search field.

Additional accessory information is located in our Vehicle Application Guide: visit diagnostics.snapon.com and enter “application guide” in the Search field.

Contact your sales representative to purchase product accessories.
Section 1
General Information

Introduction

This diagnostic tool is a specialized personal automotive diagnostic solution that combines information with test instrumentation to help you diagnose symptoms, codes, and complaints quickly and efficiently. There are three main components to the system:

- **Diagnostic Tool**—central processor and display for the system
- **Scope Module**—oscilloscope/meter module used to measure circuits and signals
- **Compact Scan Module**—wireless module used to access vehicle data

The Scope Module and Compact Scan Module are described in their applicable sections within this manual.

Main Topic Links

- **Diagnostic Tool Feature Locations** page 8
- **Power (Battery Pack/Charging)** page 9
- **Turning On/Off, and Emergency Shutdown** page 9
- **Shortcut (S) Button (Setup)** page 10
- **Camera (Taking Pictures)** page 11
- **Windows (Applicable Features / Operations)** page 12
 - **Wi-Fi Setup** page 12
 - **Windows Taskbar** page 14
 - **Touch Screen and Stylus** page 14
 - **Sleep Mode (Auto Off Display)** page 15
 - **E-Mail Client Setup** page 16
 - **Calibrating the Touch Screen** page 18
 - **Printing / Printer Setup** page 19
- **Operating System Restore** page 22
- **Accessories (Optional Equipment)** page 23
- **Diagnostic Tool Technical Specifications** page 23
1.1 Diagnostic Tool Feature Locations

1. Capacitive Touch Screen
2. Shortcut (S) Button (special functions)
3. Power Button (with backlit LED functions)
4. Audio Speaker
5. Stylus Storage
6. Scope Module M4 (removable)
7. Camera Lens
8. Communication and Power Jacks Cover
9. Head Phone Jack
10. Micro SD Card Slot
11. USB (universal serial bus) Jacks (2)
12. DC Power Supply Input Jack
13. Collapsible Stand
14. Battery Pack
15. Docking Station Connector

Figure 1-1 Features
1.2 Power (Battery Pack/Charging)

1.2.1 Internal Battery Pack

The diagnostic tool (display unit) comes equipped with a rechargeable internal battery pack that can be charged using the supplied AC power adapter. A fully charged battery pack provides sufficient power for up to 5 hours of continuous operation.

Battery Pack Charging

Use the supplied AC power adapter to charge the battery pack.

Insert the end of the AC power adapter cable into the DC power supply input jack on the diagnostic tool, then connect the AC power adapter to an approved AC power source.

IMPORTANT

Only use the supplied AC power adapter. Never connect the power adapter to the diagnostic tool when the tool is communicating with a vehicle.

Battery Status Indicator

An illuminated indicator is located in the power button, to indicate battery status and charge level.

Three colors are used to show battery level and power status:

- **Green** (continuous on) - indicates either the battery is fully charged, or the diagnostic tool is being powered by the AC power adapter.
- **Orange** (continuous on) - indicates the battery is charging.
- **Red** (continuous on) - indicates the battery is low (15% of capacity or less).

1.3 Turning On/Off, and Emergency Shutdown

The following sections describe how to turn the diagnostic tool on and off, and perform an emergency shutdown.

Before using the diagnostic tool, make sure the battery is fully charged, or is connected to the AC power adapter. See Power (Battery Pack/Charging).

1.3.1 Turning On

Press and release the Power button (*Figure 2-1*) to switch the diagnostic tool on.

The system boots up, then opens the ShopStream Diagnostic Suite Home screen.

1.3.2 Turning Off

IMPORTANT

All vehicle communication must be terminated BEFORE turning off the diagnostic tool. A warning message displays if you attempt to turn the diagnostic tool off while communicating with the vehicle. **Forcing a shut down while communicating may lead to ECM problems on some vehicles. Never disconnect the Compact Scan Module when the diagnostic tool is communicating with the vehicle ECM.**

Before turning the diagnostic tool off, it is highly recommended to back up personal and saved data to a USB mass storage device on a regular basis to prevent loss in the event of system corruption or hard disk drive failure, see Data Backup on page 177.

To turn off the diagnostic tool:

1. Navigate to the Home screen.
2. Select the Exit icon.
3. From the Windows desktop, open the Windows Start menu.
4. Select Shutdown.
1.3.3 Emergency Shutdown

IMPORTANT

Using the emergency shutdown procedure while communicating with the vehicle ECM may lead to ECM problems on some vehicles.

During normal operation, turn the diagnostic tool off using the Turning Off procedure above. The emergency shutdown procedure should only be used as the last option, if the diagnostic tool does not respond to navigation or control buttons or exhibits erratic operation.

To perform an emergency shutdown:

1. Press and release the **Power** button.

The display screen will turn off and the LED backlit power button will turn red and begin blinking.

2. Press and hold the **Power** button again, until the LED in the power button stops blinking.

1.4 Shortcut (S) Button (Setup)

The **Shortcut (S)** button (*Figure 1-2*) is located on the front of the diagnostic tool, and is a customizable button that can be set to perform various routine functions.

Pressing the shortcut button (*Figure 1-2*) (when set to open the shortcut menu), opens a slide-out menu which provides the following selectable icon options:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saves a bitmap image (screenshot) of the visible screen. For file retrieval and management information, see Viewing Saved Files on page 163. Screenshot taken while a vehicle is selected (active) in Scanner, will be associated with that vehicle. A link to the screenshot file can be found in that vehicle’s “vehicle record” on the Attachment panel, see Vehicle History on page 158. All screenshots are also uploaded to the Snap-on Cloud automatically when they are created. See The Snap-on® Cloud on page 200 for more information on using the Snap-on Cloud.</td>
</tr>
<tr>
<td></td>
<td>Opens the camera application. See Camera (Taking Pictures) on page 11 for additional information.</td>
</tr>
<tr>
<td></td>
<td>Opens the virtual keyboard. See Virtual Keyboard (Entering Text) on page 15 for additional information.</td>
</tr>
<tr>
<td></td>
<td>Opens the display brightness setting. Use multiple taps to toggle through the brightness level settings.</td>
</tr>
<tr>
<td></td>
<td>Opens the Shortcut (S) button configuration menu.</td>
</tr>
</tbody>
</table>

NOTE

You can open the Shortcut menu at anytime by pressing and holding the **Shortcut (S)** button for three seconds.
1.4.1 Configure Shortcut (S) Button

This feature allows you to change the function of the Shortcut (S) button.

To configure the Shortcut (S) button:
1. Press and release the Shortcut (S) button.
2. Select the Settings icon from the slide-out menu.
3. Choose the function you would like the Shortcut (S) button to perform when pressed (Figure 1-3).

The current/active setting is indicated by a yellow highlight box.

4. Select Cancel.

1.4.2 Advanced (menu selection)

The Advanced selection has no functionality under normal operating conditions, and should ONLY be selected when directed to do so, by Snap-on customer service.

Selecting Advanced displays the advanced diagnostic system information screen. The system information and functions are ONLY used during system troubleshooting, when requested by Snap-on customer service.

1.5 Camera (Taking Pictures)

1.5.1 Using the Camera

Selecting Camera from the Shortcut (S) button menu opens the camera application. The touch screen becomes the view finder and is also used for reviewing photographs that are taken. Icons on the touch screen are used to operate the camera. The icons change depending on which camera function is active:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo</td>
<td>Acts as a shutter to take a photograph of what is visible in the view finder, which is the left-hand portion of the screen.</td>
</tr>
<tr>
<td>Gallery</td>
<td>Opens a thumbnail gallery of recently taken pictures.</td>
</tr>
<tr>
<td>Exit</td>
<td>Closes the camera application and returns to the previous screen.</td>
</tr>
<tr>
<td>Save</td>
<td>Displays after a picture is taken. Selecting saves the photograph and returns to the view finder.</td>
</tr>
<tr>
<td>Delete</td>
<td>Displays after a picture is taken and in Gallery mode. Selecting discards the photograph and returns to the previous screen.</td>
</tr>
<tr>
<td>Back</td>
<td>Displays in Gallery mode. Selecting returns to the previously viewed screen.</td>
</tr>
<tr>
<td>Previous</td>
<td>Displays in Gallery mode. Selecting opens the picture prior to the current image in the gallery.</td>
</tr>
</tbody>
</table>
1.6 Windows (Applicable Features / Operations)

The ShopStream Diagnostic Suite program runs on the Microsoft Windows 10 operating system. This section includes introductory information on some of the Windows features and programs that are applicable with the operation of the ShopStream Diagnostic Suite program.

Specific Windows features and instructions are beyond the scope of this manual, please refer to Microsoft Windows 10 user documentation for additional information.

1.6.1 Wi-Fi Setup

The diagnostic tool uses Windows® 10 embedded system software. Wi-Fi connection is controlled through the Windows operating system.

The Wi-Fi connection instructions shown here are intended for quick reference only. For Wi-Fi related instructions / troubleshooting that are outside the scope of these instructions, visit Windows online support.

Wi-Fi connection allows you to:

- Access the Internet using the Windows web browser.
- Access information applications (e.g. Snap-on Cloud, Intelligent Diagnostics, SureTrack®, Tire and Wheel Service, TSBs, Oil Specs and Resets, etc).

 Note: Information applications are not available on all models, are optional and vary by model.
- Receive diagnostic software updates
- Receive important product messages.

Connecting to Wi-Fi

1. Turn on the diagnostic tool and allow Windows to bootup, then allow the ShopStream Diagnostic Suite software to open.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☁</td>
<td>Displays in Gallery mode. Selecting opens the picture after the current image in the gallery.</td>
</tr>
</tbody>
</table>

Taking pictures:

1. Press the Shortcut (S) Button and choose Camera from the menu.
2. Focus the image to be captured in the view finder.
3. Press the Photo icon.
 The view finder now shows the captured picture.
4. Select Save to save the image, or Delete to delete it.
5. Select Exit from the live view to close the camera application.

NOTE

Images that are taken while a vehicle is selected (active) in Scanner, will be associated with that vehicle. A link to the image file can be found in that vehicle’s “vehicle record” on the Attachment panel, see Vehicle History on page 158.

All images are also uploaded to the Snap-on Cloud automatically when they are created. See The Snap-on® Cloud on page 200 for more information on using the Snap-on Cloud.

1.5.2 Viewing Pictures

Photographs are stored on the hard drive and can be retrieved two ways:

From the Diagnostic Suite; select Data Manager from the Home screen, then open the Camera Folder.

From the desktop; select ShopStream User > My Documents > ShopStream > Camera Folder.
After bootup if Wi-Fi is not automatically connected you will notice the Wi-Fi icon in the System Tray (lower right side) is gray with an amber colored star (this indicates Wi-Fi is not connected (shown below).

![Wi-Fi Status Icon](image)

Figure 1-4

A Wi-Fi status icon is also provided on the Diagnostic Suite lower toolbar. This icon indicates connection status only and is not selectable.

![Wi-Fi Status Icon](image)

Figure 1-5

2. To connect to a network, click the Wi-Fi icon in the System Tray.

The wireless network connection window opens (shown below).

![Wireless Network Connection Window](image)

Figure 1-6

3. Choose your **Wireless Network** from the list of available networks, then select **Connect**.

NOTE

A password is required when choosing a protected network.

A wireless network connection progress window displays as the connection is being made.

4. After the connection is successfully made, the Wi-Fi icon in the System Tray will display as Connected (shown below).

![Connected Wi-Fi Icon](image)

The diagnostic tool is now connected to the Wi-Fi network.
1.6.2 Windows Taskbar

The standard Windows taskbar displays program icons that are currently running or that you have pinned to the taskbar for quick access.

1.6.3 Windows Taskbar Notification Area

The notification area contains icons that provide active status and notifications of selected programs. The notification area may contain standard Windows application icons (e.g. Wireless Network Connection Status, Audio volume, etc.) and specialized application icons designed for use only on this diagnostic tool (e.g. ShopStream Update Tool and Virtual Keyboard).

For additional information on the ShopStream Update Tool and Virtual Keyboard, see:

ShopStream Update Tool - ShopStream Update Tool (SST) on page 193
Virtual Keyboard - Virtual Keyboard (Entering Text) on page 15

1.6.4 Touch Screen and Stylus

The capacitive touch screen is used to control almost all the operations of the diagnostic tool. Simply touch the screen with your finger, or use the capacitive stylus to make a selection. The capacitive touch screen also provides you with multi-touch gesture capabilities found on common surface touch devices. Most operations are menu driven, which allows you to quickly locate the test, procedure, or data that you need through a series of choices and questions. Detailed descriptions of the menu structures are found in the sections for the various functions.

For information on touch screen calibration, maintenance and stylus tip replacement:

Touch screen calibration - see Calibrating the Touch Screen on page 18
Touch screen maintenance - see Cleaning on page 215
Stylus tip replacement - see Stylus Tip Replacement (Touch Screen) on page 219

Touch Screen Gestures

This device uses common touch screen gesture motions (e.g. pinch-to-zoom, press and tap, pan and swipe). The terms used to describe the various gestures may vary (industry wide), however the general procedures and usage are similar for specific operations.

<table>
<thead>
<tr>
<th>Common Gesture Names</th>
<th>General Procedure</th>
<th>Common Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap</td>
<td>Quickly tap a point (once), then release.</td>
<td>Make a selection (e.g. open application).</td>
</tr>
<tr>
<td>Touch Select</td>
<td>Quickly tap a point (twice).</td>
<td>Insert a cursor in a text string.</td>
</tr>
<tr>
<td>Pinch open/close</td>
<td>Touch two points, then move your fingers toward or away from each other.</td>
<td>Zoom the display in or out, to make a selection (e.g. image or picture) larger or smaller.</td>
</tr>
<tr>
<td>Pinch-to-zoom Zoom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touch and hold</td>
<td>Touch a point and maintain light pressure.</td>
<td>Make a selection.</td>
</tr>
<tr>
<td>Select and hold</td>
<td></td>
<td>Insert a cursor in a text string.</td>
</tr>
<tr>
<td>Tap and hold</td>
<td></td>
<td>Open alternate menus.</td>
</tr>
<tr>
<td>Touch and drag</td>
<td>Touch a point, then while maintaining light pressure, drag in the desired direction.</td>
<td>Move onscreen controls (e.g. scrollbars and slidebars).</td>
</tr>
<tr>
<td>Select and drag</td>
<td></td>
<td>Move windows.</td>
</tr>
<tr>
<td>Tap and drag Pan</td>
<td></td>
<td>Select text.</td>
</tr>
<tr>
<td>Swipe Flick</td>
<td>In a quick and continuous motion, select a point and quickly swipe in the desired direction while lifting off the screen.</td>
<td>Quickly scroll or move through content.</td>
</tr>
<tr>
<td>Press and tap</td>
<td>Touch a point, then while maintaining light pressure, tap (in the same general area) with another finger.</td>
<td>Open alternate menus (similar to right click).</td>
</tr>
</tbody>
</table>

The information provided in the above table is not inclusive, may vary and is intended as a general guide only. For additional information on Windows touch screen operations, see Windows 10 and Windows “Touch Gesture” user documentation. Also refer to Pen and Touch settings in the Windows Control Panel for additional information and settings.
1.6.5 Virtual Keyboard (Entering Text)

The Windows Touch Keyboard (Virtual Keyboard) allows you to type characters and key in information to complete form and data entry fields, similar to a physical keyboard.

The virtual keyboard is normally running in the Windows background and can be opened in the following ways:

- **Shortcut (S) button** - choose the Virtual Keyboard icon from the Shortcut (S) button menu
- **Windows notification area** - choose the Virtual Keyboard icon in the Windows notification area

NOTE

As an alternative, you can connect a USB keyboard to the diagnostic tool and use it to key in information.

1.6.6 Sleep Mode (Auto Off Display)

The Windows operating system uses Sleep Mode to conserve power by stopping all processes and turning off the display screen, while keeping the diagnostic tool on and your open applications active. When you are ready to resume work, the diagnostic tool can be started up again quickly, just by pressing the **Power** button.

Sleep Mode settings can be found in Windows **Control Panel > Power Options**. For additional information, refer to Windows 10 user documentation.

IMPORTANT

It is recommended that you terminate current vehicle communication and save any open working files or data before entering Sleep Mode, to avoid ECM problems (on some vehicles) or data loss from unforeseen circumstances (e.g. power loss).

IMPORTANT

If Sleep Mode is accidentally activated during active vehicle communication, vehicle communication will stop, vehicle selection will be reset to “no active vehicle” and the Home screen is displayed.

To enter Sleep Mode:

1. Press and release the **Power** button.

 The display screen will turn off, and the Battery Status Indicator located in the power button will light up red, blinking on and off at two second intervals.

 A blinking **Red** indicator (on and off at two second intervals) indicates the diagnostic tool is in Sleep Mode.

To exit Sleep Mode (wake up):

1. Press and release the **Power** button.

 The display screen will turn on and resume the last open application. Depending on settings, you may need to select your user ID icon to open the last application.
1.6.7 E-Mail Client Setup

The Data Manager function features an e-mail option that allows you to send a saved data or image files as an e-mail attachment. To use this feature, you must install an e-mail client, and then link your existing e-mail address to the client.

The following instructions are intended as a guide only, as e-mail client setup procedures vary. See Email on page 164 for information on sending e-mails from Data Manager.

E-mail client installation and setup (Example):

1. Download an email client (e.g. eM Client) (Figure 1-9).

![Figure 1-9](image)

2. Install the software following the screen prompts (Figure 1-10).

![Figure 1-10](image)

NOTE

The Data Manager e-mail feature uses the Windows system e-mail client.

3. Select “Use this client as default application” option when prompted. This sets the client as the Windows system e-mail client.

4. Enter your e-mail information as required (Figure 1-11).
NOTE

E-mail client configuration settings should automatically be set during installation. If problems arise with the setup and manual configuration is needed, refer to the e-mail client help information and the Windows help information.

5. If your existing email provider login screen displays, enter your email address and password to allow the client to continue the setup with your provider (*Figure 1-12*).

6. Follow the screen prompts to allow the client to link to your email address.

7. Once the client has successfully linked to your address, you can begin using the new e-mail client software on the diagnostic tool (*Figure 1-13*).
1.6.8 Calibrating the Touch Screen

The touch screen can be calibrated for accuracy using the Windows Tablet PC Settings.

To calibrate the touch screen:

1. From the Windows menu select Start > Control Panel > Hardware and Sound > Tablet PC Settings.

The Tablet PC Setting window is displayed (Figure 1-14).

2. Select the diagnostic tool display from the dropdown list. The current default diagnostic tool display number "1.10257C" is shown in Figure 1-14 as an example.

3. Select Calibrate.

The Calibration screen is displayed (Figure 1-15).

4. Using the stylus, follow the screen prompts and tap on the center of the cross-hairs as they appear at each corner on the screen (Figure 1-15).

5. Select OK to close the dialog boxes once the calibration is complete.

NOTE

If you are using an optional touch screen (e.g. using an external touch screen with a Tech Cart and docking station), there will be an additional touch screen choice displayed.

3. Select Calibrate.

The Calibration screen is displayed (Figure 1-15).

4. Using the stylus, follow the screen prompts and tap on the center of the cross-hairs as they appear at each corner on the screen (Figure 1-15).

NOTE

To achieve the best results, it is recommended to use the capacitive stylus when performing the touch screen calibration.
1.6.9 Printing / Printer Setup

Selecting Print opens a standard Windows Print dialog box.

To print, a printer must installed and set as the system default printer. The following sections provide basic instructions for local printer setup.

NOTE
The factory default printer setting is (.XPS file format). From the standard Windows print dialog box, you can name the file and specify the location that it is saved to. The file can then be viewed onscreen using the Windows XPS Viewer.

USB Printer Setup

1. Turn the printer on.
2. Connect the USB cable from the printer to the diagnostic tool.
3. Windows should automatically detect and install the printer.
4. Follow the onscreen instructions to install the printer and then set the printer as the default printer. See Default Printer Setting on page 21.

If the printer driver files are not automatically installed, you will have to manually install the printer driver files. Printer driver files may be supplied with the printer (e.g. CD or memory stick), or check the printer manufacturer’s website to download the files. Follow the manufacturer’s instructions for driver installation.

Wireless Printer Setup

If your printer is Wi-Fi enabled, you may have options to connect the diagnostic tool to the printer using an existing Wi-Fi network (through a router), or connect directly to the printer wirelessly.

Connecting to an existing Wi-Fi network is the most common method, as this allows you to connect to the printer and stay connected to the Internet (if applicable).

NOTE
You may only connect to one network, therefore when connecting directly to your wireless printer, any other active wireless connection will be disconnected.

Wi-Fi Network Connection

Use the following instructions (as a guide) if you choose to connect the diagnostic tool to the printer through your existing network.

1. Turn your printer on and make sure it is setup per the manufacturers instructions.
2. Connect the printer to your wireless network. A password may be required when connecting to a protected network. Note the printer connection IP address when it connects to the network.
3. From the diagnostic tool, select the Windows icon on the desktop (lower left).
4. Select Devices and Printers (right-side menu).
5. Select Add a Printer from the toolbar.
6. Select Add Network, Wireless or Bluetooth Printer*.
7. Follow the onscreen instructions to search, locate and install your printer. Windows automatically searches for available printers on the network (Figure 1-17).

NOTE

If other devices are discovered on the network, connect to the printer with the matching IP address from step 2.

It is important that you install the printer driver files when prompted, during setup. Printer driver files may be supplied with the printer (e.g. CD or memory stick), or check the printer manufacturer’s website to download the files.

8. Set the printer as the default printer. See *Default Printer Setting* on page 21.

Direct Wi-Fi Connection

Use the following instructions (as a guide) if your printer supports direct connection, and you choose to connect the diagnostic tool directly to the printer.

1. Turn your printer on and make sure it is setup per the manufacturers instructions for direct connection. The printer must be able to be wirelessly detected by the diagnostic tool.

NOTE

You can only connect to one network, therefore when connecting to your wireless printer, any other active wireless connection will be disconnected.

2. From the diagnostic tool, click the Wi-Fi icon in the System Tray (Figure 1-18).

3. Choose your *Wireless Printer* from the list of available networks, then select *Connect* (Figure 1-20).

A Wi-Fi status icon is also provided on the Diagnostic Suite lower toolbar. This icon indicates connection status only and is not selectable.
4. Enter the security password for your wireless printer. See your printer documentation for details.

A wireless network connection progress window displays as the connection is being made.

Once the diagnostic tool is connected to the Wi-Fi printer, follow these steps to install the printer:

5. Select the Windows icon on the desktop (lower left).
7. Select Add a Printer from the toolbar.
8. Select Add Network, Wireless or Bluetooth Printer.
9. Follow the onscreen instructions to search, locate and install your printer. Windows automatically searches for available printers on the network (Figure 1-17).

It is important that you install the printer driver files when prompted, during setup. Printer driver files may be supplied with the printer (e.g. CD or memory stick), or check the printer manufacturer’s website to download the files.

10. Set the printer as the default printer. See Default Printer Setting on page 21.

Default Printer Setting

To set a default system printer:

1. Select the Windows icon on the desktop (lower left).
2. Select Devices and Printers (right-side menu).
3. Touch and hold the icon of the printer you want to set as the default, until the optional menu indicator (circle outline) appears (Figure 1-21) and then release (this is also known as right-click menu). From the menu, select “Set as default printer”. When set, a check mark is displayed next to the option (Figure 1-21).

NOTE

The printer right-click menu, also provides access to other printer settings such as properties and preferences.
Checking/Installing Adobe® Reader

To print the Vehicle System Report, Adobe Reader must be installed.

To check if you have Adobe Reader installed:
1. Check if the Adobe Reader shortcut icon is on the desktop, or
2. Select the Windows icon on the desktop (lower left).
3. Select All Programs from the menu.

Adobe Reader should appear near the top of the list (depending on what other software you have installed).

To install Adobe Reader:
1. Visit: adobe.com, or get.adobe.com/reader/
2. Follow the instructions to download and install the free version of Adobe Reader for Windows.

NOTE

Deselect any options such as “Install Acrobat Reader Chrome Extension”, or install optional security, etc. Only Adobe Reader is needed.

1.7 Operating System Restore

Snap-on System Restore is a program that allows you restore the diagnostic tool operating system software to the original factory setup, in the event of a failure. Running the program replaces all "C" drive files with the original factory files and settings.

It is important to understand that ALL files on the “C” drive will be deleted when performing a restore. Performing a restore will restore the Windows operating system to the original factory setup, however the ShopStream Diagnostic Suite will be restored to the same version that was installed at the time the restore was performed.

IMPORTANT

Transfer all files (e.g. personal files) off of the “C” drive that you wish to retain BEFORE performing the system restore, as all files on the “C” drive will be deleted. To backup saved files created in the ShopStream Diagnostic Suite (e.g. engine data, scope recordings, or image files) see Data Backup on page 177.

To restore the operating system

1. Turn on the diagnostic tool.
2. During boot-up wait for the “Press the “S” button to run Snap-on System Restore.” message to display, then Press the Shortcut (S) button.
 A progress indicator displays while the program loads.
3. Select OK from the confirmation message.
 A progress indicator displays while the files are being restored.
4. Select OK from the confirmation message.
 The diagnostic tool shuts down, then reboots and the system recovery portion of the operation begins. Follow any on-screen prompts.
 The diagnostic tool shuts down and reboots a second time. When the Home screen displays, the procedure is complete and the diagnostic tool is ready for use.
1.8 Accessories (Optional Equipment)

Visit our website, or contact your local sales representative to learn more about diagnostic tool accessories. The following are just a few of the optional accessories that will allow you to take full advantage of your diagnostic scanner. Not all accessories listed here may be available in all markets.

- **Screen Protectors** - Custom-fit screen protectors can keep your diagnostic tool display screen clean and protect against scratches, solvents and dirt.
- **OBD-I European Vehicle Cable Adapter Kit** - Provides connection for many European OBD-I vehicles.
- **OBD-I Vehicle Cable Adapter Kit** - Provides connection for many U.S. domestic and Asian OBD-I vehicles back to 1980.
- **Docking Station** - Provides a convenient way to keep your diagnostic tool powered up all day, and extra connections for up to four USB devices and an HDMI video out connector to display the screen on an external monitor.
- **12VDC Power Cable** - The diagnostic tool can also be powered using an optional 12VDC vehicle power cable adapter. The power cable adapter uses vehicle power (from a standard vehicle power port) to power the diagnostic tool. Contact your sales representative to order this accessory.

1.9 Diagnostic Tool Technical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description / Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen</td>
<td>Capacitive Touch Panel</td>
</tr>
<tr>
<td>Display</td>
<td>10.1 inch diagonal, TFT Color LCD</td>
</tr>
<tr>
<td></td>
<td>1280 x 800 resolution (WXGA)</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel Quad Core N2930, 1.8GHz</td>
</tr>
<tr>
<td>Operating System</td>
<td>Microsoft® Windows® Embedded 10</td>
</tr>
<tr>
<td>Communications</td>
<td>Wi-Fi standard (802.11 b/g/n)</td>
</tr>
<tr>
<td></td>
<td>Bluetooth® 2.1 Technology</td>
</tr>
<tr>
<td>Battery</td>
<td>Rechargeable Lithium Ion Smart Battery Pack, 11.1VDC</td>
</tr>
<tr>
<td></td>
<td>Approximate 5 hour run time</td>
</tr>
<tr>
<td></td>
<td>Approximate 3.5 hour charge time</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Supply Rating; 19 VDC, 3.4A</td>
</tr>
<tr>
<td>DC Operating Voltage</td>
<td>10 to 32 VDC</td>
</tr>
<tr>
<td>Width</td>
<td>12.4 in. (316 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>8.23 in. (209 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>2.0 in. (51 mm)</td>
</tr>
<tr>
<td>Weight (including battery</td>
<td>3.80 lb (1.73 kg)</td>
</tr>
<tr>
<td>pack without Scope Multimeter Module)</td>
<td></td>
</tr>
<tr>
<td>Weight (including battery</td>
<td>4.40 lb (2.00 kg)</td>
</tr>
<tr>
<td>pack and Scope Multimeter Module)</td>
<td></td>
</tr>
<tr>
<td>Range (ambient)</td>
<td>At 0 to 90% relative humidity (non-condensing)</td>
</tr>
<tr>
<td></td>
<td>32 to 113°F (0 to 45°C)</td>
</tr>
<tr>
<td>Storage Temperature (ambient)</td>
<td>At 0 to 70% relative humidity (non-condensing)</td>
</tr>
<tr>
<td></td>
<td>-4 to 140°F (~20 to 60°C)</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Maximum 2000 m</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>This product is intended for indoor use only.</td>
</tr>
<tr>
<td></td>
<td>This product is rated for Pollution Degree 2 (normal conditions).</td>
</tr>
</tbody>
</table>
Section 2

Scanner Demonstration

2.1 Demonstration Modes

Two training (demonstration) modes are provided to help you to become familiar with Scanner functions:

- Scanner Demonstration
- OBD Training

These training modes allow you to navigate through normal Scanner and OBD-II Direct operations and menus, without connecting to a vehicle. Sample data and test results are provided to help you learn the menus and basic operations.

This section provides examples for the Scanner Demonstration only.

IMPORTANT
Do not connect the compact scan module to a vehicle while using the demonstration program.

Scanner Demonstration

The Scanner demonstration program allows you to navigate through many functions of the Scanner, and displays vehicle data (PIDs) and trouble codes (captured from an actual vehicle) to simulate what you might see on an actual vehicle.

The following Scanner demonstrations are intended to be completed in sequence:

1. Demo Setup - Before you begin
2. Scanner Demo 1 - Vehicle Identification
3. Scanner Demo 2 - Scan for Engine Codes and View Code Specific Information and PIDs using the Intelligent Diagnostics Demo
4. Scanner Demo 3 - View, Configure and Save Engine Data (PIDs)
5. Scanner Demo 4 - Perform a Functional Test
6. Scanner Demo 5 - Perform a Code Scan
7. Scanner Demo 6 - View Saved Scanner Codes, Data Files and Code Scan Reports

Demo Setup - Before you begin

Before starting these demos, connect the AC power supply to the diagnostic tool, and connect the compact scan module (CSM) to the diagnostic tool using the USB cable. This ensures the diagnostic tool battery does not discharge, and supplies power to the CSM allowing it to pair with the diagnostic tool.

IMPORTANT
Do not connect the compact scan module to a vehicle while using the demonstration program.

Scanner Demo 1 - Vehicle Identification

The first process in communicating with any vehicle is identifying the vehicle. The following walk-through will guide you through this process using the Scanner demonstration mode.

1. From the Home screen, select Scanner.
2. Screen prompt displays “Connect your Scanner Module to get started.”. Select Continue, to proceed.
3. The manufacturer (vehicle make) menu displays, select Demonstration from the bottom of the list (scroll down).
5. The simulated Vehicle ID process starts.
6. Select No, if asked if you want to scan a real vehicle.
7. The vehicle confirmation screen displays, select OK. (Selecting OK loads the specific vehicle database, in this instance it’s our demonstration database).
8. A demo mode confirmation message displays, Select Continue.
After the vehicle has been identified, a systems menu displays. This menu shows all of the vehicle systems available (supported by the vehicle) for testing. Typical systems choices may include:

<table>
<thead>
<tr>
<th>Code Scan</th>
<th>Body Control Module</th>
<th>Service Resets and Relearns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear All Codes Read by Code Scan</td>
<td>Door Module - Driver</td>
<td>Seat Module - Driver</td>
</tr>
<tr>
<td>Engine</td>
<td>Door Module - Passenger</td>
<td>Suspension (ESC)</td>
</tr>
<tr>
<td>Transmission</td>
<td>Heating and Air Conditioning</td>
<td>Theft Deterrent</td>
</tr>
<tr>
<td>Antilock Brakes</td>
<td>Instrument Panel Cluster</td>
<td>Tire Pressure Monitor</td>
</tr>
<tr>
<td>Airbag</td>
<td>Passenger Presence System</td>
<td>Transfer Case</td>
</tr>
</tbody>
</table>

Most of the system menu choices are directly related to a specific vehicle system (e.g. Engine, Airbag, Tire Pressure Monitor), with the exception of Code Scan and Clear All Codes Read by Code Scan. Code Scan is a time-saving feature that allows you to scan all supported vehicle systems at once for diagnostic trouble codes (DTCs).

Choosing a vehicle system opens the main menu for that system, which provides options for you to analyze and interact with that system. You can choose to scan for DTCs, clear DTCs, view parameter data (PIDs), perform functional tests and more.

For additional information, see Identifying the Vehicle on page 43.

Scanner Demo 2 - Scan for Engine Codes and View Code Specific Information and PIDs using the Intelligent Diagnostics Demo

This demonstration simulates performing a typical check for engine trouble codes, and then using Intelligent Diagnostics to view code-specific information and PIDs.

1. Select Engine.
2. Select Codes Menu > Display Codes > DTC Display.

Intelligent Diagnostics demonstration starts.

Normally when you select “Display Codes” a list of codes is displayed (if found) (Figure 2-1). If codes are found, you have the option to select the Diagnose icon of a code to open Intelligent Diagnostics and access code specific information. However, in demonstration mode the Intelligent Diagnostics interactive demonstration starts.

![Figure 2-1 Typical - Code list and Diagnose icon](image)

The Intelligent Diagnostics interactive demonstration explains the features of Intelligent Diagnostics, and allows you to choose any of the Intelligent Diagnostics modules to learn more about them.

NOTE

Navigation icons are provided on applicable screens to continue forward or go back. Other screens require you to make a selection to continue.

3. Select Next on the Intelligent Diagnostics demo start screen (Figure 2-2), and the following screens to continue.

![Figure 2-2 Intelligent Diagnostics Demo Welcome](image)
4. As the demo continues, navigational hints and code-specific features are described (*Figure 2-3*). Select **Next** to continue.

 ![Figure 2-3 Intelligent Diagnostics Feature Descriptions](image)

5. The demo explains that two codes are available in the code list for this demo, and to choose P0300 on the next screen (*Figure 2-4*). Select “Got It” to continue.

 ![Figure 2-4 Intelligent Diagnostics - Choosing a Code](image)

6. The code results screen displays, select P0300 to continue (*Figure 2-5*).

 ![Figure 2-5 Intelligent Diagnostics - Choose P0300](image)

7. The Intelligent Diagnostics main menu opens. Descriptions are provided for the various options, scroll down and select “**GIVE IT A TRY**” to continue.

8. Select any card (e.g. Technical Service Bulletins, Smart Data, Real Fixes, etc.) to learn more about the code-specific information that is provided. Follow the screen prompts as needed.

9. When finished, select **Back** repeatedly, and other prompts as needed to return to the Main Menu (Engine).

 For additional information about Intelligent Diagnostics, see *Intelligent Diagnostics* on page 72.

10. Proceed to **Scanner Demo 3**.

Scanner Demo 3 - View, Configure and Save Engine Data (PIDs)

This demonstration simulates viewing engine data (PIDs) in list and graph views, creating a custom data list, and saving the data for review at a later time.

For additional information on viewing data, see *Data (Viewing PIDs)* on page 55.

Viewing PIDs:

From the Main Menu (Engine), select **Data Display > Engine Data**.

The Engine Data list is displayed showing all supported PIDs. Gesture scroll to view all the data (if applicable).

Changing the displayed view:

Select an **Expand/Collapse** icon (*Figure 2-6*) to toggle a PID between list and graph display.

If the PID is in list display, selecting the **Expand/Collapse** icon will open that PID in graph display, and move it to the top of the list.

You can select multiple PIDs (scroll as needed) and open them in graph display, and then select **Graph View** from the upper toolbar to view those selected PIDs (up to 16) in a multi-graph display.

 ![Figure 2-6 Typical PID in list display](image)
Saving a PID data file:

Select Save from the upper toolbar. A confirmation message will briefly display to inform you that the data file has been saved.

Creating a custom PID list:

1. Select Custom from the upper toolbar, then select Deselect All at the bottom of the screen.
2. Select Engine Speed (RPM), MAF (g/s), and HO2S B1 S1 (V) from the list. Each PID is highlighted once selected.
3. Select Graph View or List View to view your custom PID list.
 To change your list, select Custom again and modify your selection.
4. Select Exit, and then Back to return to the Main Menu (Engine).
5. Proceed to Scanner Demo 4.

Scanner Demo 4 - Perform a Functional Test

This demonstration simulates performing a functional component test.

NOTE

This functional test demonstration is intended to show a typical testing scenario, therefore the data displayed will not change when performing a test, as it should when testing an actual vehicle.

1. From the Main Menu (Engine) select Functional Tests.
2. Select Output Controls > EVAP VENT SOLENOID Valve
3. A message displays “Test will not function correctly if on-board EVAP diagnostic is running.”, select Continue.
 The test screen displays PIDs related to the system being tested and functional test check boxes are displayed at the top labeled Venting and Not Venting.
4. To check the EVAP Vent Solenoid operation, you can turn the EVAP Vent Solenoid ON or OFF by choosing the applicable checkbox (Venting or Not Venting). At the same time you can monitor the EVAP Vent Solenoid PID to see if there is a change. Note: Switching the solenoid ON/OFF in this demo will not change PID data.
5. Select Exit and then Back until the Systems Menu displays.
6. Proceed to Scanner Demo 5.

Scanner Demo 5 - Perform a Code Scan

This demonstration simulates performing a typical code scan of all supported vehicle systems, and saving the code scan data.

1. From the Systems Menu select Code Scan.
2. Choose which type of code scan you want to perform, Pre Scan or Post Scan.
 The Code Scan results screen displays and starts the automated process of scanning vehicle systems for codes. A status indicator is displayed as the scan is performed.
3. Once the scan is complete, gesture scroll to view the complete list.
 Codes are displayed by system, and OBD-II codes and readiness monitor status is displayed towards the end of the list.
 Select the Expand/Collapse icons located at the upper left of each system category to expand and collapse their displays.
4. The code scan report is automatically saved.
5. Select the Home icon from the lower toolbar, to open the Home screen.

Scanner Demo 6 - View Saved Scanner Codes, Data Files and Code Scan Reports

This demonstration shows you how to open saved data from the previous demos.

Viewing Saved Codes and Code Scan Reports:

Vehicle records are automatically created when you identify a vehicle, and codes are saved in these records when a code scan is performed, or any system is scanned for codes.

1. From the Home screen select Vehicle History.
2. The vehicle records list displays, showing the most recent entry at the top.
3. Open the vehicle record (e.g. 2016 Demostration..Tahoe (4WD)...) from the top of the list. This should be the record just created from performing these demos, and will have the current date.
 The vehicle record opens, providing you options to enter more information about the vehicle, and also includes a Data Display window which lists the codes found from the scan. In this case a Code Scan was performed, so all the codes found in the scan are displayed.
 The attachments window shows a PDF link for the Code Scan Vehicle Systems Report. A collective list of all Vehicle Systems Reports is also available from Data Manager, (Home screen icon) (Select Data Manager > Vehicle System Report Data Folder).
4. Select Back until the Home screen is displayed.

Viewing Saved Data (PIDs):

Data files are saved with a .pids file extension and show the date saved and vehicle information in the file name.

1. From the Home screen select Data Manager.
2. Select Scanner Data Folder.

The Scanner data file list displays, showing the most recent at the top.

3. Select the data file from the top of the list to view it.

The Scanner DataViewer opens in a separate window to display all PID data. See Scanner DataViewer on page 166 for additional information.

4. Close the Scanner DataViewer window.
5. Select My Data from the upper toolbar.
6. Select the Home icon from the lower toolbar, to open the Home screen.

End of Scanner demonstration.

To become familiar with other capabilities of the Scanner function, navigate through the other services and menu options within the Scanner Demonstration Mode. Also, watch our product training videos at: http://diagnostics.snapon.com/trainingsolutions
Introduction
This section describes the basic operation, and navigation of the ShopStream Diagnostic Suite program Home screen and icons.

Main Topic Links
• The ShopStream Diagnostic Suite Program page 29
• Home Screen Layout page 29
• Function Icons page 30
• Toolbar Icons page 31
• Menu Icon page 31
• Changing the Units of Measurement page 32

3.1 The ShopStream Diagnostic Suite Program
The ShopStream Diagnostic Suite program is used for all diagnostic functions. The ShopStream Diagnostic Suite icon is located on the Windows desktop.

![Figure 3-1 ShopStream Diagnostic Suite desktop icon](Image)

The program is automatically started when the diagnostic tool is turned on through the Windows "start up" folder function. Once started the Home Screen displays, see Home Screen Layout. The program runs in a normal window and can be minimized, resized, and closed like any other Windows program.

To access the Windows desktop, minimize the program window, or use the Desktop icon, see Toolbar Icons on page 31

3.2 Home Screen Layout
The Home screen includes Function Icons, the Main Toolbar and Windows Taskbar.

![Figure 3-2 Home screen](Image)

1. Function Icons, see Function Icons on page 30
2. Main Toolbar, see Toolbar Icons on page 31
3. Windows Taskbar, see Windows Taskbar on page 14
4. Windows Taskbar Notification Area, see Windows Taskbar Notification Area on page 14

NOTE
The ShopStream Diagnostic Suite can also be started from the Windows Start menu.
3.3 Function Icons

The Function Icons configure the diagnostic tool for the type of test to be performed. The following table gives brief descriptions of the available icons, which operations are available depends upon the individual configuration of your system. Use the stylus or your finger tip to select from the icons.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner</td>
<td>Configures the diagnostic tool to operate as a scan tool. See Scanner on page 42.</td>
</tr>
<tr>
<td>OBD Direct</td>
<td>Allows you to perform generic OBD-II or EOBD system tests without identifying the specific vehicle. See OBD Direct on page 81.</td>
</tr>
<tr>
<td>Guided Component Test</td>
<td>Opens a diagnostic database of specific tests for the identified vehicle. See Guided Component Tests on page 86.</td>
</tr>
<tr>
<td>Scope Multimeter</td>
<td>Configures the diagnostic tool to operate as a lab scope, graphing multimeter, or digital multimeter. See Scope and Multimeter Operations on page 94.</td>
</tr>
<tr>
<td>SureTrack & Repair Information</td>
<td>Once configured, opens SureTrack, ShopKey Pro or Pro Demand depending on your account authorization. See SureTrack® & Repair Information on page 179.</td>
</tr>
<tr>
<td>Snap-on Cloud</td>
<td>Opens the Snap-on Cloud website. See The Snap-on® Cloud on page 200.</td>
</tr>
<tr>
<td>Vehicle History</td>
<td>Identifies the test vehicle and organizes and manages work in progress and service records. See Vehicle History on page 158.</td>
</tr>
<tr>
<td>Quick Lookups</td>
<td>Provides OEM vehicle information for Oil Specs and Resets and Technical Service Bulletins. See Quick Lookups on page 148.</td>
</tr>
<tr>
<td>Data Manager</td>
<td>Opens the organization system for saved data files. See Data Manager on page 162.</td>
</tr>
<tr>
<td>Training and Support</td>
<td>Opens the Snap-on Diagnostics website. From the website you can view training videos or download the diagnostic tool user manual and other product support documentation. See Training and Support on page 173.</td>
</tr>
<tr>
<td>System Settings</td>
<td>Establishes and manages connections to peripheral devices, such as the Scan Module. See System Settings on page 175.</td>
</tr>
<tr>
<td>Exit</td>
<td>Closes the diagnostic tool software and returns the display to the Windows desktop.</td>
</tr>
</tbody>
</table>
3.4 Toolbar Icons

Operation of the icons located on the toolbar are described in the table below:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Selecting this icon returns you to the Home screen from any test. See Home Screen Layout on page 29.</td>
</tr>
<tr>
<td>Desktop</td>
<td>Selecting this icon toggles the Windows taskbar on/off at the bottom of the screen, and allows you access to the Windows desktop.</td>
</tr>
<tr>
<td>Menu</td>
<td>Selecting this icon opens a menu that provides information and basic operations and features for the current screen. See Menu Icon on page 31.</td>
</tr>
<tr>
<td>Technical Service Bulletins</td>
<td>Provides Technical Service Bulletin information (if available) for the identified vehicle. See TSBs (Technical Service Bulletins) on page 150.</td>
</tr>
<tr>
<td>Change Vehicle</td>
<td>The currently identified vehicle is shown to the right of the icons, selecting allows you to change the identified test vehicle.</td>
</tr>
<tr>
<td>View Record</td>
<td>Selecting the icon opens an editable worksheet of vehicle records.</td>
</tr>
<tr>
<td>Compact Scan Module Hardware Status</td>
<td>Indicates the connectivity status of the Compact Scan Module. Icon changes depending on status. See Checking Paired Status on page 37 for icon descriptions.</td>
</tr>
<tr>
<td>Scope Module Hardware Status</td>
<td>Indicates the connectivity status of the Scope Multimeter Module. Icon changes depending on status. See Checking Paired Status on page 37 for icon descriptions.</td>
</tr>
<tr>
<td>Wi-Fi Icon</td>
<td>Indicates the connectivity status of your Wi-Fi connection. See Wi-Fi Setup on page 12 for icon descriptions.</td>
</tr>
</tbody>
</table>

3.5 Menu Icon

The Menu icon on the Toolbar at the base of the display screen provides various system information. See below for additional information.

3.5.1 Help

Basic menu options, which are available for all modules, include:

- **Version Info** - This option opens a window showing the version of the software and a copy of the Software License Agreement. Select OK to close the window.

- **Activation Status** - This option opens a dialog box with version and licensing details for the system, and activation status for the diagnostic tool and all other modules.
3.6 Changing the Units of Measurement

The Diagnostic Suite units of measurement can be changed for temperature, vehicle speed, air pressure and other pressure readings. Choose between US customary or metric units of measure.

To change the units of measurement:

1. Select Scanner.
2. Select the Menu icon from the lower toolbar.

3. Select Tools > Units Setup.
 The Units setup dialog box opens.

4. Use the dropdown menus to select the desired value for each item.
5. Select Accept to close the dialog box and apply the changes.
Section 4

Compact Scan Module (CSM)

Introduction

This section describes the connection, and basic operation of the Compact Scan Module (CSM).

The CSM is a wireless device that is connected directly to the vehicle data link connector (DLC), and wirelessly transmits vehicle data to the diagnostic tool.

Main Topic Links

- Feature Locations page 33
- Power Source page 33
- LED Indicators page 34
- Connecting the CSM page 34
- Pairing and Hardware Status Icons page 36
- Hardware Status Icons page 37
- Firmware Updates page 38
- Troubleshooting page 39
- Technical Specifications page 41

4.1 Feature Locations

![Figure 4-1 Compact Scan Module](image)

1. LED indicator
2. Universal serial bus (USB) jack
3. Lanyard anchor
4. Micro SD card slot
5. LED Flashlight
6. LED Flashlight switch

4.2 Power Source

The CSM requires power from an external source to operate.

When testing OBD-II/EOBD vehicles, the CSM is powered by the vehicle when connected to the data link connector (DLC).

When testing OBD-I vehicles that do not have battery power (B+) at the DLC, the CSM is powered by connecting a power cable directly to the optional OBD-I manufacturer specific adapter, see *To connect the CSM to OBD-I vehicles: on page 35.*

When performing a CSM firmware update, the CSM should be powered by USB connection directly to the diagnostic tool, see *Firmware Updates on page 38.*
4.3 LED Indicators

Light emitting diodes (LEDs) on the CSM indicate communication status. The following LED descriptions apply only when the CSM is powered by the vehicle DLC.

- **GREEN** - Power / Communication indication
- **RED** - Error / Self-test indication
- **BLUE** - Connection / Communication indication

LED indicator descriptions:

- **GREEN**
 - Off - CSM is not being powered
 - On Continuous - CSM has power, but is not communicating
 - Flashing - CSM has power, and is communicating
- **RED**
 - Off - normal state, no errors detected
 - On Continuous - communications error detected
 - Flashing - internal self-test in process, will go out once the test completes
- **BLUE**
 - Off - no connection
 - On Continuous - USB cable connected and communicating
 - Flashing - wirelessly connected and communicating

4.4 Audible Alerts

In addition to onscreen messages, the CSM uses audible tones to alert you of connection status. Alerts include:

- **Initial power on** - (single 100ms “beep”)
- **Communication terminated, CSM still connected to vehicle DLC** - (After losing communication, will continuously beep at two different frequency’s every 10 seconds.)
- **Communication terminated with diagnostic tool (out of range)** - (After losing communication, will continuously beep at two different frequency’s every 10 seconds.). Diagnostic tool will also display a message “trying to re-establish communication”, see Out of Range Alarm on page 40.

If other alerts occur (series of “beeps”) this may indicate a communication error. Follow the onscreen instructions, to identify and resolve the issue.

4.5 LED Flashlight (built-in)

A built-in LED flashlight is provided to assist in illuminating dark areas in the vehicle to find the DLC. To operate the light, press and hold the switch (see Figure 4-1 for location).

The LED is powered by a built-in (non-replaceable) battery, and automatically charges when the CSM is supplied power.

4.6 Basic Operation

4.6.1 Connecting the CSM

To use the Compact Scan Module (CSM), it must be powered, paired to the diagnostic tool and connected to the vehicle DLC. To pair the CSM, see Pairing The Scan Module on page 59. For power source information see, Power Source on page 33.

To connect the CSM to OBD-II vehicles:
1. Connect the CSM directly to the vehicle DLC.
2. Proceed to Basic Scanner Operation (Quick Start) on page 43.

NOTE

An optional CSM extension cable DA-4EX is available to allow an extended connection of the CSM to the vehicle DLC.
To connect the CSM to OBD-I vehicles:
The following applies to most OBD-I vehicles. Use the optional DA-6 adapter and the optional OBD-I manufacturer specific adapter. Connection example shown Figure 4-3. Contact your sales representative to purchase adapters.

1. Connect the CSM to the DA-6 adapter.
2. Connect the DA-6 adapter to the OBD-I manufacturer specific adapter.
3. Connect the OBD-I manufacturer specific adapter to the vehicle DLC.

 For vehicles that do not supply battery power at the DLC, connect the optional 12VDC power cable to the OBD-I manufacturer specific adapter.

IMPORTANT

Never disconnect the power cable from the optional OBD-I adapter or the power supply to the diagnostic tool if the tool is communicating with a vehicle.

4. Proceed to *Basic Scanner Operation (Quick Start)* on page 43.
4.6.2 Pairing and Hardware Status Icons

To use the CSM, it must be paired with the diagnostic tool.

Pairing is the wireless connection (identification) process used to connect the CSM to your diagnostic tool.

The CSM only needs to be paired once before its initial use. The connection configuration should remain in memory for all future uses, unless the connection configuration is removed or lost.

NOTE

Wireless devices shown in this section are used as reference. Not all devices shown may be applicable to your diagnostic tool.

To pair the CSM with the diagnostic tool:

1. Turn on the diagnostic tool.

 IMPORTANT

 The CSM and diagnostic tool must be on when pairing. Make sure the diagnostic tool has a fully charged battery, or is connected (recommended) to the AC power supply.

2. Connect the CSM to a vehicle data link connector (DLC), or use the supplied USB cable to connect the CSM to the diagnostic tool to supply power to the CSM.

 NOTE

 The green LED on the CSM is illuminated when power is being supplied to the CSM by a vehicle DLC. The blue LED is illuminated when power is being supplied by USB connection.

3. After the CSM is powered (green LED on), from the diagnostic tool select System Settings > Paired Devices.

4. Select Add from the toolbar, then OK when prompted.

 The diagnostic tool searches for compatible wireless devices, then displays the results. (Figure 4-4).

5. Select your CSM from the results list.

 A progress message displays during the pairing procedure (Figure 4-5), the Paired Devices screen (Figure 4-7) displays once the procedure completes.

 IMPORTANT

 Search results include all compatible wireless devices detected, and may include multiple Scan Modules if you are in a shop environment where more than one unit is powered on. Available module listings include a partial serial number. Make sure the screen listing matches the last six digits of the serial number of your CSM before continuing.

6. After the pairing process completes, select the Home icon on the toolbar to return to the Home screen. The CSM and diagnostic tool are now paired for wireless communication and should automatically connect when both are powered up.
NOTE

If a CSM firmware update is available, the CSM will automatically be updated, see Firmware Updates on page 38 for additional information.

When pairing is successful the CSM hardware status indicator displays on the Home screen (lower-right corner) (Figure 4-6), providing a quick reference to connection status.

Figure 4-6

Checking Paired Status

To check if the CSM is paired to your diagnostic tool:

1. Select System Settings > Paired Devices.

 The paired devices screen opens (Figure 4-7).

 The Paired Devices screen lists all of the devices paired to the diagnostic tool, and also indicates whether or not there is active communication occurring.

 Figure 4-7 Typical Paired Devices screen results

2. Verify the CSM is in the list of paired devices.

3. For additional CSM connection status information, see Hardware Status Icons on page 37.

Hardware Status Icons

The hardware status indicators (Home screen lower-right corner) provide a quick reference to connection status (Figure 4-8).

Figure 4-8 Home screen - Hardware status icons

<table>
<thead>
<tr>
<th>Status/Icon</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired and Communicating</td>
<td>Indicates the CSM is wirelessly connected and communicating.</td>
</tr>
<tr>
<td>Not Paired</td>
<td>Indicates the CSM is not paired or connected to the diagnostic tool. Pair the CSM to the diagnostic tool. See Pairing and Hardware Status Icons on page 36 for instructions.</td>
</tr>
<tr>
<td>Paired but Not Communicating</td>
<td>Indicates the CSM is wirelessly connected but not communicating. You may have moved out of range. Move the diagnostic tool closer to the CSM to reestablish communications. If connectivity is not restored, see Pairing and Hardware Status Icons on page 36 for instructions, or if required perform the Loss of Connection - Recovery Procedures on page 40.</td>
</tr>
</tbody>
</table>
4.7 Firmware Updates

The internal programming (firmware) of the CSM may require periodic updates. Firmware updates increase the CSMs diagnostic capabilities; typically by adding support for new tests, vehicles, and enhanced applications to the vehicle databases.

CSM firmware updates (when available) are delivered with diagnostic software updates/upgrades. Upon starting the Scanner function, initially after a software update or upgrade has been installed, a message may be displayed to inform you an update is available (Figure 4-9).

NOTE

When performing a firmware update it is recommended to disconnect the CSM from the vehicle (if connected) and use the supplied USB cable to connect the CSM to the diagnostic tool.

<table>
<thead>
<tr>
<th>Status/Icon</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired and Communicating</td>
<td>Indicates a USB cable is connected between the CSM and the diagnostic tool, and the CSM is communicating (through the USB cable) with the diagnostic tool.</td>
</tr>
<tr>
<td>Paired but Not Communicating</td>
<td>Indicates a USB cable is connected between the CSM and the diagnostic tool, but the CSM is not communicating with the diagnostic tool. If connectivity cannot be restored, see Pairing and Hardware Status Icons on page 36 for instructions, or if required perform the Loss of Connection - Recovery Procedures on page 40.</td>
</tr>
</tbody>
</table>

![Figure 4-9 Firmware update message](image)

The firmware update process, as explained in the following procedure, begins automatically after ten seconds (only when connected by USB) unless Update Now or Update Later is selected. Selecting Update Now begins the process immediately. Update Later defers the operation, closes the message, and starts the Scanner function. If you choose not to perform the update, it will not affect diagnostic tool operation, however you will not benefit from the additional features available in the update. Selecting Details in the upper-right corner opens a list of what is included in the update.

Updating firmware:

IMPORTANT

The diagnostic tool must be connected and powered by the AC power supply during the CSM firmware update process. Damage can occur to the CSM if the diagnostic tool power is turned off, the power supply is disconnected, or the diagnostic tool looses communication (out of range) with the CSM during the firmware update process.

1. Connect the AC power supply to the diagnostic tool.
2. Turn on the diagnostic tool.
3. Connect the CSM to the diagnostic tool as follows:
NOTE

When performing a firmware update it is recommended to disconnect the CSM from the vehicle (if connected) and use the supplied USB cable to connect the CSM to the diagnostic tool. Using the USB cable provides power direct from the diagnostic tool to the CSM, and allows for faster updates. Leaving the CSM connected to the vehicle DLC during a firmware update will work, however may take longer than if connected by USB. Also, if vehicle power to the DLC is interrupted, or the diagnostic tool loses communication with the CSM, the CSM may not update correctly and/or be damaged.

a. Plug the small end of the USB cable into the USB jack on the CSM.
b. Plug the large end of the USB cable into one of the USB jacks on the side of the diagnostic tool.

NOTE

When connected, the CSM USB connection status icon will change to indicate the CSM is connected by USB.

4. Select Scanner from the diagnostic tool Home screen.
5. Select Update Now when the update available message displays (Figure 4-9).

The update begins and installation progress is tracked on the screen (Figure 4-10).

A “Successfully Updated” message displays once the installation process is complete (Figure 4-11).

6. Select OK to close the message and return to Scanner operations. The CSM, now has the latest firmware update, and is ready to use.

4.8 Troubleshooting

When troubleshooting CSM connectivity issues, first review the CSM LED status and hardware status icons for possible causes. See Hardware Status Icons on page 37, and LED Indicators on page 34.

CSM operations can be impacted when signal interference, or some other condition, disrupts or impairs the wireless communication network. These interruptions are usually temporary and easily repaired.

Indicators of wireless communication interference include:

- Slow CSM response accompanied by “Error 101” message.
- Slow CSM response accompanied by “Error 404” message.
- “Error Occurred” Message when trying to use the CSM.
- “Error Occurred” Message after 20 or more minutes sitting idle, particularly if the devices have been stationary.
4.8.1 Error Messages

If the CSM is paired to the diagnostic tool and tries to communicate with the vehicle and the CSM is not connected to the vehicle, a "no communication" message displays.

The following conditions cause a "no communication" message to display:
- The Scanner is unable to establish a communication link with the vehicle.
- You selected a system for testing that the vehicle is not equipped with (such as ABS).
- There is a loose connection.
- There is a blown vehicle fuse.
- There is a wiring fault on the vehicle, or in the CSM, or adapter.
- There is a circuit fault in the CSM, Personality Key, or adapter.
- Incorrect vehicle identification was entered.

4.8.2 Out of Range Alarm

If the diagnostic tool is moved out of range of the CSM while communicating, the CSM will sound a short tone and the diagnostic tool will display a message "Trying to Re-establish Communication". The message will display until communication is established.

Move within range (approximately 50 feet (15.24 m) to restore the connection.

4.8.3 Loss of Connection - Recovery Procedures

This is a quick and easy method that reestablishes connectivity between the diagnostic tool and the CSM in most instances. If connectivity remains unavailable following recovery, use one of the alternate procedures to restart the system.

NOTE
This product is intended to be used by professional technicians in a garage environment. Electrostatic discharges may happen occasionally and cause a loss of communication. To restore communication disconnect and reconnect the CSM and follow screen prompts.

To recover wireless connectivity:
1. Disconnect the CSM from the vehicle.
2. Navigate to the Home Screen on the diagnostic tool.
3. Select Exit to close the ShopStream Diagnostic Suite.
4. Connect the CSM to the vehicle.
5. Select the ShopStream Diagnostic Suite icon on the desktop.

Figure 4-12 Sample ShopStream Diagnostic Suite desktop icon

Alternate Recovery Procedures

Use these methods as alternate options to the Recovery Procedure, or when recovery fails to restore the wireless connection.

USB Procedure

This method establishes a "hard-wired" USB cable connection between the CSM and diagnostic tool.

To connect by USB:
1. Plug the small end of the USB cable into the USB jack on the CSM.
2. Plug the large end of the USB cable into a USB jack on the diagnostic tool.

Scanner functionality should be restored immediately once the USB connection is complete. If not, suspect a hardware failure. The diagnostic tool and CSM are both fully functional, so you can complete your testing with the USB connection intact.
Software Restart Procedure
This method, which closes and restarts the ShopStream Diagnostic Suite software, takes about two minutes to complete.

To restart the ShopStream Diagnostic Suite:
1. Navigate to the Home Screen on the diagnostic tool.
2. Select Exit to close the ShopStream Diagnostic Suite.
3. Wait for the CSM Communication LED to stop flashing.
4. Select the ShopStream Diagnostic Suite icon on the desktop.
 The ShopStream Diagnostic Suite should open with connectivity restored.

Windows Reboot Procedure
This method, which completely shuts down the diagnostic tool, takes several minutes to complete.

To reboot the diagnostic tool:
1. Disconnect the CSM from the vehicle.
2. Navigate to the Home Screen on the diagnostic tool.
3. Select Exit to close the ShopStream Diagnostic Suite.
4. Select Start in the lower-left corner of the screen to open the menu.
5. Select Turn Off Computer from the menu.
6. Select Turn Off when the Confirmation window opens.
7. Wait for the tool to completely turn off, then press the Power button to restart the diagnostic tool.
8. Connect the CSM to the vehicle once the ShopStream Diagnostic Suite opens.

4.9 Technical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description / Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>Wireless Bluetooth® 2.1 Technology</td>
</tr>
<tr>
<td>Operating Range</td>
<td>Approx. 50 feet (15.24 m)</td>
</tr>
<tr>
<td>USB Power</td>
<td>5V @ 500mA</td>
</tr>
<tr>
<td>DC Operating Power</td>
<td>8V to 32V, Maximum 10 Watts</td>
</tr>
<tr>
<td>Width</td>
<td>1.85 in. (47 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>0.92 in. (23.4 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>4 in. (101.6 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.22 lb (100 g)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>At 0 to 90% relative humidity (non-condensing)</td>
</tr>
<tr>
<td>Range (ambient)</td>
<td>32 to 113°F (0 to 45°C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>At 0 to 70% relative humidity (non-condensing)</td>
</tr>
<tr>
<td>(ambient)</td>
<td>−4 to 140°F (−20 to 60°C)</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Maximum 2000 m</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>This product is intended for indoor use only</td>
</tr>
<tr>
<td></td>
<td>This product is rated for Pollution Degree 2 (normal conditions)</td>
</tr>
</tbody>
</table>
Introduction

The Scanner function allows your diagnostic tool to communicate with the electronic control modules (ECMs) of the vehicle being serviced. This allows you to perform tests, view diagnostic trouble codes (DTCs), and live data parameters from various vehicle systems such as the engine, transmission, antilock brake system (ABS) and more.

Main Topic Links

- Basic Operation page 42
- Basic Scanner Operation (Quick Start) page 43
- Identifying the Vehicle page 43
- Selecting a Vehicle System page 44
- Selecting a Vehicle System Test/Function page 45
- Codes Menu (Viewing Codes) page 48
- Clear Codes page 49
- Code Scan (with Vehicle System Report) page 49
- Data (Viewing PIDs) page 55
- Using Triggers page 65
- Functional Tests page 69
- Generic Functions page 71
- Troubleshooter page 71
- Intelligent Diagnostics page 72

5.1 Basic Operation

This section includes a basic overview of the Scanner function and basic operation information.

5.1.1 Scanner Overview

Scanner is a menu driven application that communicates with vehicle control modules to access diagnostic trouble codes (DTCs), parameter data (PIDs), functional tests, and more. To navigate the application, use your fingertip or the stylus to make onscreen menu selections to access the desired data, test or function.

Screen messages appear when additional input is needed before proceeding. There are three types of on-screen messages; confirmations, warnings, and errors.

- **Confirmation Messages** - Confirmation messages inform you when you are about to perform an action that cannot be reversed or when an action has been initiated and your confirmation is needed to continue. When a user-response is not required to continue, the message displays briefly before automatically disappearing.

- **Warning Messages** - Warning messages inform you when completing the selected action may result in an irreversible change or loss of data.

- **Error Messages** - Error messages inform you when a system or procedural error has occurred. Examples of possible errors include a disconnected cable or a peripheral, such as a printer, is powered off.
5.1.2 Basic Scanner Operation (Quick Start)

This section lists the basic scanner operation steps, and is only intended as a quick-start reference. Refer to the supporting topics in this section for detailed operation information.

Getting Started (Basic Steps)

1. Turn the diagnostic tool on.
2. Turn the vehicle ignition switch on.
3. Connect the CSM to the vehicle DLC. See Connecting the CSM on page 34.

NOTE

Menus, options and procedures may vary by vehicle. The following instructions apply to most OBD-II vehicles. Not all vehicles support the Auto ID and, or Instant ID feature.

4. Select Scanner from the Home screen.

NOTE

The CSM must be paired to the diagnostic tool to communicate. See Pairing and Hardware Status Icons on page 36.

5. Depending on the vehicle, Instant ID may occur. See Instant ID on page 43 for additional information.
6. If Instant ID is not supported, after selecting vehicle year and make, choose Automatic ID or Manual ID and enter the vehicle information at the screen prompts to continue. See Identifying the Vehicle on page 43.
 If Automatic ID is selected, the identification process automatically completes (if supported by the vehicle) after the vehicle make and year are manually entered.
7. Select a Vehicle System (e.g. Engine). See Selecting a Vehicle System on page 44.

5.1.3 Identifying the Vehicle

Connection of the CSM to the diagnostic tool and vehicle DLC is required for Scanner testing.

Vehicle identification is the initial step in using the Scanner function. Once vehicle identification information is entered it is saved in Vehicle History and can be selected again to save time when re-testing the same vehicle in the future.

NOTE

Menus options and procedures may vary by vehicle.

Instant ID

Instant vehicle identification is a built-in (default) Scanner feature that will save you time when identifying a vehicle, by automatically communicating with the vehicle to complete the vehicle identification process. Depending on the vehicle, Instant ID may occur automatically and only ask you to confirm the vehicle, or additional screen prompts may be displayed to enter vehicle information.

To complete the Instant ID process and continue, select Continue from the vehicle confirmation screen.

Manual ID

If Instant ID is not supported, the vehicle identification must be manually entered. The vehicle identification sequence is menu driven, follow the screen prompts to enter the vehicle information.

To complete the Manual ID process and continue, select Continue from the vehicle confirmation screen.
Identifying a vehicle:

1. Select **Scanner** from the Home screen.

 A list of vehicle manufacturers (makes) will display (*Figure 5-1*).

 In addition, the last four scanned vehicles are listed at the top of the screen (Recent Vehicles) for quick-re-identification if needed.

 Select the \[\] icons to expand/collapse the list.

2. Select a manufacturer or vehicle from the list. If a Recent Vehicle is selected, that vehicle will be re-activated.

 A model year menu will display.

 NOTE

 You can limit the number of manufacturers that appear on the list by selecting **Configure Favorites** from the toolbar. See Configuring the Favorites List on page 87 for details.

3. Select the vehicle year.

 A list of vehicle types or models will display. Several selections may be required to identify the vehicle type and model, follow the screen prompts and enter the required information.

 A confirmation page showing the identified vehicle will display once all the required data has been entered. Review the information to make sure it is correct.

4. Select **OK**.

 Alternative Vehicle Identification

 Occasionally, you may try to identify a test vehicle that the Scanner does not recognize, the database does not support, or has some unique characteristics that prevents it from communicating with the Scanner. In these instances, there is an alternate choice that allows you to establish communication with the vehicle:

 - **OBDII/EOBD Function**—this function allows you to connect to the OBDII equipped vehicle and perform basic OBD-II or EOBD diagnostic functions, see OBD Direct on page 81 for additional information.

 Taking Pictures and Screenshots In Scanner.

 Camera images and screenshots that are taken while a vehicle is selected (active) in Scanner, will be associated with that vehicle. A link to the files can be found in that vehicle’s “vehicle record” on the Attachment panel, see Vehicle History on page 158.

 All images and screenshots are also uploaded to the Snap-on Cloud automatically when they are created. See The Snap-on® Cloud on page 200 for more information on using the Snap-on Cloud.

5.1.4 Selecting a Vehicle System

 Selecting a vehicle system:

 1. After the vehicle has been identified, the Systems menu will display available vehicle systems.

 The System menu can be displayed in two views, by individual system categories or by common vehicle system categories. To change the view, select/deselect the **Category View** checkbox in the upper toolbar. Typical views are shown in (*Figure 5-2* and *Figure 5-3*).

 2. Select the desired vehicle system to continue.
NOTE

Not all vehicle systems may be supported by the vehicle, or available. Available systems will vary across vehicle manufacturers and models.

Typical vehicle system options may include:

- Engine
- Transmission
- Anti-lock Brakes
- Airbag
- Body Control Module
- Instrument card
- Tire Pressure Monitor

Special vehicle system options may include:

- Code Scan, see Code Scan (with Vehicle System Report) on page 49
- Clear All Codes Read by Code Scan, see Clear All Codes Read by Code Scan on page 54
- Service Resets and Relearns, see Service Resets and Relearns on page 54
- Oil Specs and Resets, see Oil Specs and Resets on page 148.

5.1.5 Selecting a Vehicle System Test/Function

Selecting a vehicle system test/function:

After a vehicle system is selected the vehicle system main menu will display (Figure 5-4) available tests and/or functions. Select the desired option to continue.
NOTE
Not all vehicle system test/functions may be supported by the vehicle, or available. Available system test/functions will vary across vehicle manufacturers and models.

Typical vehicle test/function options may include:

- **Codes Menu**, see page 48
- **Clear Codes**, see page 49
- **Data Display**, see page 55
- **Generic Functions**, see page 71
- **Functional Tests**, see page 69
- **Troubleshooter**, see page 71
- **Actuator Tests**—similar to functional tests, checks the operation of certain actuators, such as solenoid valves and relays.
- **Memory Resets**—allows you to reprogram adaptive values for certain components after making repairs. Selecting opens a submenu. These options are found on the Functional Tests Menu for some models.
- **System Tests**—provides specific subsystem testing. Performing these tests is similar to functional tests.

NOTE
Actual onscreen test/function names may vary.

5.1.6 Exiting Scanner
To exit Scanner, you must first terminate communication with the vehicle. The Scanner function will remain open as long as there is an active communication link with the vehicle.

NOTE
A warning message displays if you attempt to exit before terminating communication with the vehicle. Damage to the vehicle’s control modules may occur if communication is abnormally disrupted. Make sure the CSM is properly connected at all times when communicating with a vehicle. Always exit all tests properly, and return to the Home screen before disconnecting the CSM, and before turning off the diagnostic tool.

To exit Scanner:
Before disconnecting the diagnostic tool from the vehicle, Scanner communication must be terminated.

1. As applicable, end any test being performed, and then select the **Exit** or **Back** icon from the upper toolbar (Figure 5-5).

![Figure 5-5](image)

2. Continue to select the **Back** icon until the “stopping communication” message is displayed.

3. Select the **Change Vehicle** icon (Figure 5-6).

![Figure 5-6](image)

4. The vehicle description on the lower toolbar will change to display “No Active Vehicle”.

5. Select the **Home** icon on the lower toolbar, to return to the Home screen (Figure 5-7).

![Figure 5-7](image)

6. Disconnect the CSM from the vehicle DLC.
5.2 Menu Options (lower toolbar icon)

The following Menu options are available:
- **File**—allows you to print or save the data being viewed.
- **Tools**—allows you to perform certain maintenance operations and adjust tool settings.
- **Help**—see Help on page 31

5.2.1 File

Use to print or save a copy of the data currently being viewed. Menu options include:
- **Save**—opens a submenu with these options:
 - **Screenshot**—saves a graphic image of the current screen.
 - **Collected Data**—saves a recording of all the data currently in the buffer plus the number of frames designated after the trigger event (see Properties on page 62).
- **Print**—opens a submenu with these options:
 - **Screen**—sends the current screen image to a printer.
 - **Troubleshooter**—prints the full text of the troubleshooter topic shown in the main body.

Selecting an option opens a Windows Print dialog box for printing or saving the file. See Printing / Printer Setup.

5.2.2 Tools

This option (only available from within Scanner) allows you to adjust tool settings to your personal preferences. Selecting Tools opens a menu with two options:
- **Units Setup** - Changing the Units of Measurement
- **Display BEN

Changing the Units of Measurement

The Diagnostic Suite units of measurement can be changed for temperature, vehicle speed, air pressure and other pressure readings. Choose between US customary or metric units of measure.

To change the units of measurement:
1. Select Scanner.
2. Select the Menu icon from the lower toolbar.
3. Select Tools > Units Setup.
 The Units setup dialog box opens.

4. Use the dropdown menus to select the desired value for each item.
5. Select **Accept** to close the dialog box and apply the changes.
Display BEN

Selecting this option displays the Balco Engine Number (BEN) of the currently identified vehicle. In the event you contact customer service about a Scanner data issue, you may be asked to provide the BEN for reference to help in troubleshooting the issue.

5.2.3 Help

Menu options include:
- About Scanner Hardware Version - This option opens a dialog box showing the hardware version and other details about the Scanner function. A Copy to Clipboard icon allows you to paste the information to a document or e-mail.
- About Scanner This option opens a dialog box that shows the software version and other Scanner function details. A Copy to Clipboard icon allows you to paste the information to a document or e-mail.

The Version Info, and Activation Status options are the same as explained previously, see Menu Icon on page 31 for details.

5.3 Codes Menu (Viewing Codes)

NOTE

The “Codes Menu” descriptive name may vary (e.g. Codes, Codes Menu, Codes Only, Codes (No Data), or other similar).

Selecting Codes Menu from the Vehicle Systems Test/Function menu opens a submenu of options for viewing and clearing individual system codes (e.g. Engine codes, Transmission codes, ABS codes).

Typical options may include (descriptive name may vary):
- Display Codes, see page 48
- Clear Codes, see page 49
- Freeze Frame/Failure Records, see page 49

To scan all vehicle systems at once, see Code Scan (with Vehicle System Report) on page 49.

5.3.1 Display Codes (Code List)

Selecting Display Codes (descriptive name may vary) may directly open a list of the diagnostic trouble codes (DTCs) found, or it may open a submenu of options (see below).

The code list (Figure 5-11) includes:
- Total codes found indicator (upper left)
- A list of all codes found.

Selecting a code from the list opens Intelligent Diagnostics providing you additional code specific information. See Intelligent Diagnostics on page 64 for detailed information.

![Figure 5-11 Typical - Code list](image)

Typical submenu options may include (descriptive name may vary):
- (Variable Name) Codes — opens a list of diagnostic trouble codes in ECM memory.
 Example of variable name - All Powertrain Codes, Current Codes, All Body Codes, etc.
- History Codes — opens a list of codes whose symptoms are not currently present. History codes indicate an intermittently occurring problem.
- Failed This Ignition — opens a list of codes that set during the current ignition cycle.
- MIL SVS or Message Requested — displays ECM requests to light the malfunction indicator lamp (MIL) or service vehicle soon (SVS) lamp, or display a driver information alert.
- Last Test Failed — displays a complete list of failed tests.
- Test Failed Since Code Cleared — displays a list of tests that failed since the last time codes were cleared from ECM memory.
5.3.2 Clear Codes

NOTE

The Clear Codes function is dependent upon the vehicle. Not all vehicles may support this function. See Selecting a Vehicle System on page 44.

To clear codes:

1. Select Clear Codes from the Codes Menu.

 A confirmation message displays.

2. Make sure any conditions shown on the confirmation message are met, then select Yes.

 A “codes cleared” message will display once the operation is complete.

3. Select Continue to return to the Codes Menu.

5.3.3 Freeze Frame/Failure Record Data

Selecting the Freeze Frame Data icon (Figure 5-12), displays a snapshot of the data captured at the time the code was set.

5.4 Code Scan (with Vehicle System Report)

Code Scan allows you to quickly scan all supported vehicle control modules for codes. In addition, Global OBD-II codes and Readiness Monitors are scanned giving you a complete health check of vehicle systems.

One of the benefits of performing a code scan is that you can quickly show your customer diagnostic related issues with a pre scan report, and then after repairing the issues you can use the post scan report to show that the repairs were completed (Figure 5-13). In addition, by using the Snap-on Cloud the reports can be given to the customer and also saved for your own records, for more information, see The Snap-on® Cloud on page 200.

IMPORTANT

PRE / POST Scan Importance - As many systems do not turn on the check engine light or other indicator, performing a vehicle code scan before making any repairs may help in troubleshooting, by identifying possible unknown issues that may be related to the present symptoms.

Performing pre and post scans also allows you to record in report format the pre-condition of the vehicle and compare the post scan after work is complete to confirm the repairs were completed properly.

Pre and post scan is required by some manufacturers for pre and post collision work as well as by some insurance companies.

NOTE

When a Code Scans is started, the generated report will be associated with the vehicle that was active at the time it was started. A link to the Code Scan PDF file can be found in that vehicle’s “vehicle record” on the Attachment panel, see Vehicle History on page 158.

All Code Scan reports are are also uploaded to the Snap-on Cloud automatically when they are created. See The Snap-on® Cloud on page 200 for more information on using the Snap-on Cloud.
The Code Scan function is dependent upon the vehicle. Not all vehicles may support this function. See Selecting a Vehicle System on page 44.

Selecting Code Scan from the Vehicle System menu opens the Code Scan Pre/Post Scan menu (Figure 5-14). Select the type of code scan you are performing. Each type of report is titled appropriately.

After selecting the report type, the Code Scan results screen (Figure 5-15) opens and an active scan of the vehicle control modules starts. When initially opened, a progress bar is shown at the top indicating the active scanning progress. Once completed, code results are displayed by system.

The following Code Scan toolbar options are used:

<table>
<thead>
<tr>
<th>Toolbar Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>Saves the Vehicle System Report as a PDF, see Saving the Vehicle System Report on page 52. Save also attaches the report to the current vehicle record (viewable using the Attachments icon from the vehicle record toolbar).</td>
</tr>
<tr>
<td>Print</td>
<td>Allows you to print the Vehicle System Report, see Printing the Vehicle System Report on page 52.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the code scan data (restarts the code scan)</td>
</tr>
</tbody>
</table>

The following results are displayed progressively as the modules are scanned:

- The total number of systems (modules) detected (Figure 5-15).
Quick reference indicators are used to show system code status (*Figure 5-15*):
- **Green icon “✓” mark** - No Codes
- **Yellow Triangle icon “!” mark** - Codes are present

- **Systems Code list with totals** - A categorized system list with code totals is displayed in the order they are scanned. To view the main menu for a system in the list, select the system title (*Figure 5-16*).

 Figure 5-16 System title (opens System Main Menu)

Select the **expand/collapse icon** (*Figure 5-17*) on the left side of a system category title to expand or collapse a system list.

 Figure 5-17 Expand/Collapse Icon (expanded view)

- **Diagnose Icon** - (*Figure 5-18*) Selecting Diagnose opens *Intelligent Diagnostics* providing you additional code specific information. See *Intelligent Diagnostics* on page 64 for detailed information.

 Figure 5-18 Diagnose icon

- **Global OBDII DTCs**. Towards the end of the Code Scan list Global OBD-II DTCs are displayed (if applicable) (*Figure 5-19*).

 Figure 5-19 OBD-II code results
Some 2005 to 2008 vehicles may not display global OBD-II information in the Code Scan list. A message will be displayed to inform you the OBD-II - codes and monitors for this vehicle may be accessed using the global OBD-II function.

- **Readiness Monitor Test Status.** At the end of the Code Scan Report, readiness monitor test results are displayed as “Tests Complete” or “Not Complete” (Figure 5-20).

![Figure 5-20 Readiness Monitor status](image)

Quick reference indicators are used to show monitor status.
- **Green icon “✓” mark** - Monitor test is complete
- **Grey icon “—” mark** - Monitor test is not complete

NOTE

Monitors that are not supported by the vehicle are not displayed in Code Scan.

5.4.1 Saving the Vehicle System Report

The code scan can be saved as a Vehicle System Report in PDF file format.

The PDF file can be accessed from either of the following locations:
- Vehicle Record attachment field.
- Vehicle System Report Data Folder (in Data Manager).

To save the Vehicle System Report:

1. Perform a code scan.
2. After the code scan has completed, select **Save**.

A confirmation message is displayed indicating that the file was saved and it's location.

Message Example: The file is attached to the vehicle record, and can be accessed from Vehicle History or Data Manager. It is located in the System Code Scan Data Folder. File name (example): `C:\Users\ShopstreamUser\Documents\ShopStream\Vehicle System Report Data Folder\Vehicle System Report (date).pdf`.

3. To print or view the file, see **Printing the Vehicle System Report** on page 52.

5.4.2 Edit Vehicle System Report Shop Information

To edit the Shop Information displayed on the Vehicle System Report header, see **Shop Information** on page 176.

5.4.3 Hide / Show Vehicle System Report Timestamp

See **Code Scan (Timestamp)** on page 178.

5.4.4 Printing the Vehicle System Report

Before you can print you must install a printer and have a current version of Adobe Reader installed.

To install a printer, see **Printing / Printer Setup** on page 19.

To check and/or install Adobe Reader, see **Checking/Installing Adobe® Reader** on page 22.

- The Vehicle System Report may be directly printed by selecting the **Print** icon from the code scan toolbar.
If the file was saved (toolbar Save icon) it may also be printed from either the Vehicle Record attachment, or from the Vehicle System Report Data Folder within Data Manager.

The following sections describe these methods.

Printing (From Code Scan Screen)

After a code scan has been performed, the Vehicle System Report can be directly printed by selecting the **Print** icon from the toolbar.

When print is selected, the file is sent directly to the default printer. The file may be displayed momentarily in the PDF viewer and then minimized (this is normal).

Note: The file is not saved using this method. To save the file, see Saving the Vehicle System Report on page 52.

Printing (From Data Manager)

When a code scan is saved, the file is saved as a PDF file in the Vehicle System Report Data Folder within Data Manager.

To print the file from Data Manager:

1. Select **Data Manager** from the Home Screen
2. Select and open the Vehicle System Report Data Folder (**Figure 5-21**).

3. Select and open the Vehicle System Report PDF file from the list.
4. From the PDF viewer use the menu or toolbar print options to print the file (**Figure 5-22**).

Printing (From Vehicle History Record)

When a code scan is saved, the file is saved as a PDF file in the attachments section of the current Vehicle Record.

To print the file from the Vehicle History Record:

1. Select **Vehicle History** from the Home Screen
2. Select and open the vehicle record from the list.
3. Select and open the Vehicle System Report PDF file from the attachments box (**Figure 5-23**).

4. From the PDF viewer use the menu or toolbar print options to print the file (**Figure 5-22**).
5.4.5 Clear All Codes Read by Code Scan

Selecting **Clear All Codes Read by Code Scan** erases all codes from all vehicle system modules that were read by Code Scan.

NOTE

Availability of the Clear All Codes Read by Code Scan function is dependent upon the vehicle. Not all vehicles may support this function.

5.5 Service Resets and Relearns

The **Service Resets and Relearns** option, saves you time by providing you with a full menu of vehicle specific resets/relearns (functional tests) and related OEM information to help you successfully start and complete these services.

The number in the blue icon (**Figure 5-24**) indicates the number of resets and relearns supported for the vehicle.

Selecting **Service Resets and Relearns** (from the System menu) (**Figure 5-24**) opens a categorized list of all the available resets and relearns (**Figure 5-25**).
5.6 Data (Viewing PIDs)

Selecting Data displays the data (PID) list for the selected module. The Data display is typically opened from the Vehicle Systems Test/Function menu, see Selecting a Vehicle System Test/Function on page 45. The descriptive name may vary (e.g. Data, Data Display, Data Menu, Data Only, or other similar).

Selecting Data may result in one of the following:
- A submenu of data viewing options opens (Figure 5-27).
- Vehicle data displays.

NOTE

On some models, the engine must be started or cranked before data can be displayed. For these models, a "Waiting to Communicate" message displays if the engine was not cranked or started.

![Figure 5-27](image)

5.6.1 Data Screen Overview

![Typical data screen (List / text) layout shown](image)

Select the Expand/Collapse icon (Figure 5-29) to toggle a PID between list (Figure 5-29) and graph display (Figure 5-30).

Selecting the Expand/Collapse icon (PID in list display), opens the PID in graph display, and moves that PID to the top of the list (Figure 5-31).

![Figure 5-29](image)

![Figure 5-30](image)

![Figure 5-31](image)
indicates the current vertical point of the signal. When displayed as a status, it correlates to an operational state (e.g. On/Off, Enabled/Disabled, etc).

4—Menu Icon -
- Full Screen View - expands the graph to fill the entire screen
- Setup - opens graph scale and trigger settings

Figure 5-29 Typical PID (list view)

Figure 5-30 Typical PID (graph view)

Use gesture scrolling (up/down) to quickly move through each data list (**Figure 5-31**).

Figure 5-31

Data Display Options

PIDs can be displayed in different views (**Figure 5-32**).

1—List View
2—Split View
3—Full Screen Graph
4—Multi-Graph View

Figure 5-32
List View

List View is the default view mode and displays all PIDs in list (text) format *(Figure 5-33).*

Split View

To view one or more PIDs as a graph *(Figure 5-34)* from the list view, select the **Expand/Collapse** icon. To return the PID to list view, select the icon again.

Multi-Graph View

To view more than one PID in a multi-graph display *(Figure 5-35)*, select the PID **Expand/Collapse** icon to open each PID in graph display you want to include, then select **Graph View** from the toolbar. To return to list view, select **List View** from the toolbar.
Full Screen Single Graph View

To view a single PID graph in full screen (*Figure 5-36*), select the PID **Expand/Collapse** icon to open the PID in graph display, then select **Graph View** from the toolbar, or select the **Menu** icon and then select **Full Screen Graph**.

To exit full screen, select **List View** from the toolbar, or select the **Menu** icon, and then select **Normal Graph**.

Data Toolbar

The Data toolbar contains a number of icons that allow you to configure the displayed data and to exit:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>Closes the current test and returns to the menu.</td>
</tr>
<tr>
<td>Back</td>
<td>Returns to the previously viewed screen.</td>
</tr>
<tr>
<td>Custom</td>
<td>Configure which parameters are displayed on the screen. See Custom [on page 59].</td>
</tr>
<tr>
<td>Alarms</td>
<td>Set alarms for two-state PIDs. See Alarms [on page 61].</td>
</tr>
<tr>
<td>Properties</td>
<td>Allows you to adjust the display characteristics for all of the data screens. See Properties [on page 62].</td>
</tr>
<tr>
<td>Graph View</td>
<td>Allows you to simultaneously view up to 16 data graphs. See Graph View [on page 63].</td>
</tr>
<tr>
<td>Save</td>
<td>Saves a copy of the current frame of data that can be viewed using Data Manager. See Save [on page 63].</td>
</tr>
<tr>
<td>Print</td>
<td>Opens a standard Windows Print dialog box for saving a print copy of the current frame of data. See Printing / Printer Setup [on page 19].</td>
</tr>
<tr>
<td>Scale</td>
<td>Hide, or display, the scale values (left side of the graph). See Scale [on page 64].</td>
</tr>
<tr>
<td>Sweep</td>
<td>Hide, or display, the sweep values (base of the graph). See Sweep [on page 64].</td>
</tr>
<tr>
<td>Next Data Group</td>
<td>Display the next data group in the Data Menu.</td>
</tr>
</tbody>
</table>
Custom

Custom is used to set which PIDs are displayed. Minimizing the number of PIDs displayed allows you to focus on specific data and may increase the data transmission rate from the vehicle. You can add or remove most parameters from the list.

NOTE

Limiting the number of parameters that display allows for a faster refresh rate of the data.

To create a custom data list:

1. Select Custom on the Scanner Toolbar. The parameter selection dialog box with all of the parameters selected opens (Figure 5-37).
2. Select the Deselect All icon to clear the highlights from the screen.
3. Create a custom data list by selecting the parameters to be included. Highlighting indicates a parameter that displays, parameters that are not highlighted do not display.

4. Once all desired parameters have been selected, return to the data list:
 - Use the List View icon to return to a data screen in PID List format.
 - Use the Graph View icon to return to a data screen in Graph View format, see Graph View on page 63 for details.

NOTE

Graph View is only available when 16 or fewer parameters (the number that can display on a single screen) were selected for the custom list. Make sure that no more than 16 parameters are highlighted if the screen displays a single graph when the Graph View icon is selected.

Custom PID list (cross-system)

Some vehicles may support a cross-system custom PID list, which allows you to choose multiple PIDs from across available systems to create a custom list.

Selecting a cross-system custom PID list is similar to selecting a standard custom PID list, however you have the option to select PIDs from multiple lists. See Custom on page 59 for basic operation instructions.

At the time of this publication, only select CAN integrated 2005 and later Mercedes-Benz®, Jaguar®, Chrysler®, Volkswagen® and Audi® vehicles support this feature. As future diagnostic software updates occur, additional vehicle makes and models may be included.

NOTE

The total number of PIDs that can be custom selected is limited, and varies by vehicle make and model.
NOTE

Limiting the number of parameters that display to those that apply to a particular situation results in a faster data refresh rate, and reduces the amount of memory used for saved files. Limiting the parameters also allows you to focus on any suspicious or symptom-specific data parameters.

To create a Cross-System custom data list:

1. From the Data screen select Custom from the toolbar (Figure 5-38).

 The custom data selection screen displays (upper image Figure 5-39).

2. Select the ▼ ▶ icons to expand/collapse each PID category, and select the PIDs you want (lower image Figure 5-39), to create your custom list.

 Each PID will highlight, as you select it.

 Once you have selected all the PIDs you want to build your custom list, those PID categories that have selections will be highlighted in the main list (Figure 5-40).

 To choose all the PIDs in a category, select the PID category check box.
3. To view the custom list, select **List View** or **Graph View** from the toolbar *(Figure 5-41)*.

The custom list displays *(Figure 5-42)*.

NOTE

From the Custom Data list, if you select **Back** to display the Data Menu list, your new Custom List shows as a selectable option at the top of the list *(Figure 5-43)*. This Custom List option will only remain an option as long as you are in the Data Menu. This allows you to view other data lists and return to your Custom List, however, if you back out to the Main Menu, and then return to the Data Menu your Custom List is deleted.

Alarms

Alarms are visual indicators alongside a parameter in the data display list that change color to show the signal status. A green alarm indicates on, a gray alarm indicates off. Only digital parameters, those with a range limited to two states (e.g. enabled/disabled, on/off, etc), can have alarms. Parameters with continuous ranges, such as variable voltage and pressure values, cannot have alarms. The alarm indicator assignments remain as selected until you exit the data list:
To configure alarm settings:
1. Select the Alarms icon on the Scanner Toolbar. The Alarm List dialog box will open.
2. Check the parameters that you want to show alarms.
3. Select Save.
 Alarm indicators now appear next to the selected parameters in the Data List (Figure 5-44).

NOTE
Alarms can only be set for certain parameters. If the Alarm List dialog box is empty, no parameters are available and alarms cannot be set.

Properties
Properties is used to configure (all) graph color, settings, samples after trigger, and sweep (Figure 5-45).

- **Edit Plot Color** and **Edit Background Color** are used to set graph plot and background colors.
- **Show Grid** is used to hide/display graph background grid pattern.
- **Samples After Trigger** settings determine how many data samples (number of frames) are recorded following a trigger event.
- **Sweep** is used to set the amount of data that displays across the graph. Values are in sample points (frames of data). A frame of data equals one complete transmission of the serial data by the electronic control module.
Graph View

Graph View allows you to display up to 16 graphs (Figure 5-46). To view more than one PID in a multi-graph display, select the PID Expand/Collapse icon to open each PID in graph display you want to include, then select Graph View from the toolbar. To return to list view, select List View from the toolbar. The display defaults to a single graph if more than 16 graphs are open when the toolbar icon is selected. Should this happen, return to the data list and close some of the graphs.

NOTE

The screen does not scroll in Graph View mode, it adjusts to show only the selected parameters.

Save

Save is used to record PID data. Saved files can be helpful when trying to isolate an intermittent problem or to verify a repair during a road test.

To save PID data:

- Select Save.

A save dialog box displays while data is being saved. The file is saved when the message box disappears.

Figure 5-46 Graph View screen

Graph View mode can also be used from the custom data list configuration screen. Refer to Custom on page 59 for details.

Figure 5-47 Save file screen

To open saved Scanner data files, from the Home screen select Data Manager > Scanner Data Folder, see Scanner DataViewer on page 166.
Print

See Printing / Printer Setup on page 19.

Scale

Scale allows you to display/hide the graph scale values along the left side of the graphs (Figure 5-48).

Sweep

Sweep allows you to display/hide the graph sweep values, displayed below the graphs (Figure 5-49).

Data Controls Toolbar

Whenever communication is established with a vehicle, the Scanner continuously collects data transmitted by the ECM in the data buffer. The Data Toolbar (Figure 5-50) contains the controls for navigating the buffered data and other options.
Use the self-centering slider button in the middle of the toolbar to quickly move through paused data.

Use the self-centering slider button in the middle of the toolbar to quickly move through paused data.

5.6.2 Using Triggers

Trigger Description and Status Icons

Setting PID triggers allows you to configure the diagnostic tool to automatically save PID data to a file, when a PID value meets an upper/lower limit (trigger point). When a PID value meets the trigger point it activates the trigger which captures a short recording of all available PID data and saves it as a data file. You can replay the saved data file to closely evaluate not only the PID that triggered the event, but all the PIDs being monitored to collectively see what was happening at the time of the event.

Trigger indicators and the arming control are shown in (Figure 5-52).
1— Activated PID Trigger Indicator - A red flag and text indicate the PID trigger has activated.

2— Trigger Cursor - A red cursor line is displayed as a marker at the point the trigger was activated.

3— Upper and Lower Limit Lines - Limit lines indicate the upper and lower thresholds (trigger points).

4— Armed PID Trigger Indicator - A blue outlined flag indicates the PID trigger is armed.

5— Trigger Arm Control Icon - Select this icon to arm/disarm all PID triggers. See Trigger Arming/Disarming on page 69.

PID Trigger Status Icons

The icons (below) are used to help you quickly identify the status of individual PID triggers:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trigger has been set (configured) and is armed.</td>
</tr>
<tr>
<td></td>
<td>Trigger has been activated (upper or lower limit has been met).</td>
</tr>
</tbody>
</table>

Trigger Setup

To use triggers, they must be turned on, set (configured), and then armed. Use the following procedures to setup PID triggers. See Trigger Arming/Disarming on page 69 for trigger arming/disarming information.

1. Select **Properties** from the toolbar.

2. Highlight one of the **Samples After Trigger** options (0, 5, 10, 20, 50, 100, 200, 500 or 100) (Figure 5-53).

3. Select **Save**.
To turn a trigger on, and set upper/lower trigger limits:

1. Select the Menu icon on the PID you want to set a trigger on.
2. Select Setup.
 The properties dialog box opens (Figure 5-54).
3. To turn the trigger on select the Trigger On checkbox.
4. Enter the desired upper threshold trigger limit in the Max field.
5. Enter the desired lower threshold trigger limit in the Min field.
6. Select Save.
7. To arm the trigger, see Trigger Arming/Disarming on page 69.

Upper and lower trigger limit lines (red) are displayed on the graph.

To use Autoscale or set the scale manually:

Autoscale On - The graph scale (vertical axis range) is automatically adjusted based upon the minimum and maximum PID values. Autoscale On (checkbox selected) is the default setting, and can be used for most testing. To access this setting:

1. Select the Menu icon on the PID you want to set.
2. Select Setup.
 The properties dialog box opens (Figure 5-54).
3. Select Autoscale checkbox.

Autoscale Off (manual setup) - Allows you to set the Graph scale (vertical axis range).

To manually set the scale:

1. Select the Menu icon on the PID you want to set.
2. Select Setup.
 The properties dialog box opens (Figure 5-56).
3. Deselect the Autoscale checkbox.
 The check mark is cleared from the box and the minimum and maximum fields activate.
4. Enter the desired upper limit in the Max field.
5. Enter the desired lower limit in the Min field.
6. Select Save.
7. To arm the trigger, see Trigger Arming/Disarming on page 69.
NOTE
Minimum scale setting must be less than the maximum scale setting:

About Activated Triggers
A trigger is activated (displays red flag) when a PID value meets an upper/lower limit (trigger point).

When a trigger is activated:
- Data collection is briefly paused as the Scanner captures a short recording of all available PID data from just before the trigger point to just after, and saves it as a data file.
- A message displays indicating a data file was saved (Figure 5-58).
- Data collection restarts. Note - Triggers for other PIDs (not activated) will continue to be armed.
- The activated PID trigger is disarmed. Note - if a different PID trigger is activated subsequently, the previously recorded data file will be over written.
- A red cursor line is displayed on the graph of the PID with the activated trigger to indicate where the trigger occurred. A black cursor line is displayed on all the other PID graphs to indicate their relationship to where the trigger occurred.
- The PID name, flag icon, and current value all change color to red on the PID with the activated trigger.
 - Note - When data collection restarts the current value may switch from red to blue as the data runs over the limit and returns within limits.
5.7 Functional Tests

The Functional Tests selection is used to access vehicle-specific subsystem and guided component tests. Available tests vary by manufacturer, year, model, and only the available tests display in the menu.

IMPORTANT

Follow all instructions while performing tests or resets.

IMPORTANT

Do not enter any functional tests while driving on a road test. During some functional tests, the ECM makes changes to ignition timing, fuel delivery, and other engine functions, which may affect engine operation and vehicle control.

How and what information is presented on the screen varies according to the type of test being performed.

There are four types of functional tests:

- **Information Tests**—are read-only tests, like selecting "VIN" from a Functional Tests menu to display the VIN of the identified vehicle.
- **Toggle Tests**—switch a component, such as a solenoid, relay, or switch, between two operating states.
- **Variable Control Tests**—command a certain value for a system or component, such as varying the spark timing in 1° increments or the EGR valve duty cycle in 10% increments.
- **Reset Tests**—reset the adaptive, or learned, values that are stored in the electronic control module.

Typical functional test options may include:

- CKP Variation Learn
- EVAP Service Test
- Injector Balance

Trigger Arming/Disarming

Arming - arms all triggers to record data if a trigger is activated.

Disarming - prevents all triggers from activating.

Select the trigger arm control icon (in the data control toolbar) to arm or disarm all triggers.

If trigger settings are modified, or are added for other PIDs, they are armed as soon as you exit the setting screen.

Rearming Activated Triggers

Once a PID trigger has activated, you cannot use the Trigger Arm Control Icon to rearm that trigger.

To rearm an activated trigger use one of the following methods:

- **Rearm Individual Trigger**

a. Select the **Menu** icon on the PID you want to rearm the trigger on.

b. Select **Setup**.

c. From the properties dialog box, select **Save**. This rearms the trigger using the original trigger points. If different trigger points are needed, change the Max/Min values and then select **Save**.

- **Rearm All Triggers and Clear Data**

a. Select the **Clear** icon .

b. From the confirmation screen select **Yes**.

Trigger Arm Control Icons

<table>
<thead>
<tr>
<th>Trigger Arm Control Icons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Flashing Icon) When this icon is flashing, the triggers are not armed and no data capture will occur. (Select this icon to arm)</td>
<td></td>
</tr>
<tr>
<td>When this icon is continuously displayed, triggers are armed, and ready to capture data. (Select this icon to disarm)</td>
<td></td>
</tr>
</tbody>
</table>
Selecting a **Functional Test** opens the test. A typical test includes on-screen instructions (*Figure 5-59*) followed by a test screen (*Figure 5-60*) that provides a changeable value or switch that is manually entered or actuated on-screen and a list of displayed PID(s) to monitor their behavior while performing the test.

Figure 5-59 Typical instructions

With transmission in park/neutral, set parking brake, block drive wheels. Start and idle engine.

Figure 5-60 Sample functional test controls

Functional test controls allow you to activate/deactivate or change the test signal. The controls will vary depending on the test, a few examples are shown in the following table.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activates the test.</td>
</tr>
<tr>
<td></td>
<td>Allows you to switch data lists.</td>
</tr>
<tr>
<td></td>
<td>Allows you to select which parameters display during the functional test.</td>
</tr>
<tr>
<td>Minus</td>
<td>Switches an item to low or off, or incrementally reduces a variable signal.</td>
</tr>
<tr>
<td>Plus</td>
<td>Switches an item to high or on, or incrementally increases a variable signal.</td>
</tr>
</tbody>
</table>

5.7.1 Functional Resets and Procedures

Functional Resets allow you to manually reset certain control module values (e.g. reset fuel trim values, or turn off the oil change indicator) directly from the diagnostic tool (if supported by the vehicle).

Functional Resets Procedures are step-by-step instructions to guide you though an on-vehicle reset procedure. These instructions maybe provided in certain applications (if available) when on-tool functional resets are not supported.

Functional resets are not available for all vehicles, and will vary depending on vehicle support. A screen message may display “Functional Reset is not available for this vehicle”.

5.8 Generic Functions

Selecting **Generic Functions** from the Vehicle Systems Test/Function menu opens a submenu of available OBD-II/EOBD tests and functions for 1996 and newer vehicles.

For additional information on generic OBD-II functions refer to the *Global OBD Vehicle Communications Software Manual*.

Typical OBD-II/EOBD tests and functions include:

- **MIL Status** - displays the ID and status of the Malfunction Indicator Lamp (MIL)
- **Troubleshooter** - displays vehicle specific experience-based tests and tips
- **Readiness Monitors**—displays the status of the OBD-II/EOBD required monitors
- **($01) Display Current Data** - displays a screen containing Generic OBD PID data
- **($02) Freeze Frame**—displays data stored in ECM memory when a DTC is set
- **($05) Oxygen Sensor Monitoring**—displays on-board oxygen sensor monitoring test results
- **($06) On-Board Monitored Systems**—displays the status of system monitors
- **($08) Request Control of On-Board System**—establishes bidirectional ECM communication
- **($09) Calibration Identification**—displays the ECM calibration identification numbers
- **($09) Calibration Verification Number**—displays the ECM calibration
- **($09) In-Use Performance Tracking**—displays a monitoring conditions report
- **($09) Vehicle Identification Number**—displays the VIN
- **($0A) Emissions Related Fault with Permanent Status**—displays a record of permanent codes

5.9 Troubleshooter

Troubleshooter is a database of experience-based information that has been compiled by top-notch technicians, and contains basic information on many common diagnostic trouble codes (DTCs).

Selecting **Troubleshooter** from the Vehicle Systems Test/Function menu opens a submenu of options (options may vary).

- **Code Tips**—provides detailed information on setting conditions, testing, and interpreting test results for specific codes.
- **Symptom Tips**—provides diagnostic tests and procedures based on vehicle operation.
- **Time Savers**—provides supplemental information, such as firing order and #1 cylinder location, that may be needed to make a diagnosis.
- **Tests and Procedures**—explains how to perform certain tests on the specific test vehicle. Some tips provide specifications and installation information as well.

Troubleshooter information is organized into a series of diagnostic tips that are designed to quickly lead you to the root cause of a particular problem. The tips are vehicle-specific, which means only tips that relate to the identified vehicle are presented.

NOTE

Troubleshooter appears in a Scanner menu only if tips are available for the system selected on the identified vehicle.
Introduction

Intelligent Diagnostics provides access to the latest code-specific data, information, and tests, all obtained from actual shop repair orders and industry professionals.

Intelligent Diagnostics may include the following code-specific information and data (if available):

- **Technical Bulletins** - View Safety Recalls, Technical Service Bulletins (TSB’s), and OEM Campaigns
- **Top Repairs Graph** - View a graph of the specific parts and procedures most frequently used to fix the selected code or symptom.
- **Smart Data** - View custom code-specific PID lists developed to show you just the data you need related to the code. Smart Data also highlights PIDs that are operating outside known-good values.
- **Functional Tests and Reset Procedures** - Test components using command functionality directly from the diagnostic tool and reset service indicators.
- **Guided Component Tests** - Test components quickly and accurately with Guided Component Tests that include step-by-step instruction, component specifications and troubleshooting information.
- **Real Fixes and Troubleshooter** - View code-specific procedures, tests, and tips that have been gathered from actual shop repair orders and industry professionals.

6.1 Main Topic Links

- Accessing Intelligent Diagnostics page 72
- Main Menu and Basic Navigation page 73
- Code Results Dropdown Menu page 74
- Top Repairs Graph page 75
- Technical Bulletins (OEM Information) page 75
- Smart Data page 76
- Functional Tests and Reset Procedures page 77
- Guided Component Tests (GCTs) page 78
- Real Fixes page 80
- Troubleshooter page 80
- Repair Information page 80

6.2 Accessing Intelligent Diagnostics

Intelligent Diagnostics is accessed by selecting the Diagnose icon from the Scanner code results list. For code results list information, see Codes Menu (Viewing Codes) on page 48.

To review basic Scanner operation procedures, see Basic Scanner Operation (Quick Start) on page 39.
6.3 Main Menu and Basic Navigation

Intelligent Diagnostics information modules are contained in one multi-card main menu. This allows you to easily select a card (e.g. Technical Bulletins, Smart Data, Real Fixes, etc), view the data and then quickly return to the main menu to open another card.

NOTE

Some Intelligent Diagnostics functions are similar to Scanner functions and may share navigation and controls instructions. These topics use cross references to the applicable common information.

The following descriptions are used with Figure 6-2.

1. **Wi-Fi Connection Status Indicator** - A Wi-Fi connection indicator (cloud icon) is provided on the top of the screen (Figure 6-2). This icon is also used to indicate service expiration, the icon changes color to red, and displays the word “Expired” in the event your software version is not upgraded to the latest available version.

2. **Code Results Dropdown Menu** - Displays selectable list of all present codes.

3. **Top Repairs Graph** - Graphical display of the specific parts and procedures most frequently used to fix the selected code or symptom.

4. **Technical Bulletins** (card) - Lists code-specific Safety Recalls, Technical Service Bulletins (TSB’s), and OEM Campaigns.

5. **Smart Data** (card) - Displays code-specific PIDs and highlights PIDs operating outside known-good limits.

6. **Functional Tests and Reset Procedures** (card) - Perform code-specific functional component tests directly from the diagnostic tool.

7. **Guided Component Tests** (card) - Test code-specific components quickly and accurately with Guided Component Tests that include step-by-step instructions, component specifications, and troubleshooting information.

8. **Real Fixes** (card) - Provides a list of code-specific procedures and tests that have been gathered from actual shop repair orders and presented in a complaint, cause, and correction format.

9. **Troubleshooter** (card) - Opens a list of code-specific tips gathered from industry experts.

10. **OEM Repair Information** (card) - Provides a link to and optional information service (e.g. ShopKey® Pro). See SureTrack® & Repair Information on page 179 for information.
Intelligent Diagnostics Navigation

Basic navigation is accomplished by selecting the desired menu card.

Use the Back icon (shown in Figure 6-3 and Figure 6-4) to navigate back to the previous screen.

To expand a card to full size, select anywhere in the card (Figure 6-3). See typical expanded card example in (Figure 6-4).

To close the card, select the Exit “X” icon (Figure 6-4).

Some applications provide print functionality to print the screen results. Select the Print icon on the right side of the upper toolbar (Figure 6-4). See Printing / Printer Setup.

6.4 Code Results Dropdown Menu

The Code Results Dropdown menu allows you to quickly choose any of the scanned codes from the code list, without having to exit Intelligent Diagnostics. Select a code to view specific data about that code within Intelligent Diagnostics.
6.5 Top Repairs Graph

The Top Repairs Graph (*Figure 6-7*) shows the most common verified fixes using the parts listed.

Example - In the graph shown below, the most common fix for the code was replacing the intake manifold gasket. This fix occurred 413 times, with the most occurrences (85) at 100k miles in vehicles with up to 200k miles.

Depending on the information available, the graph may also include probable causes. See example in *Figure 6-7* “cleaned mass airflow sensor”.

6.6 Technical Bulletins (OEM Information)

The Technical Bulletins card (*Figure 6-8*) provides a quick link to OEM Recall, TSB and Campaign information that may be available for the selected code.

- A red icon (*Figure 6-8*) indicates the total number of Recalls, TSBs, and OEM Campaigns that have been found.
- A green icon indicates a search was performed and no results were found.

Selecting the Technical Bulletins card (*Figure 6-9*) provides a detailed list view of the available OEM Recalls, TSBs, and Campaigns (*Figure 6-10*).
6.7 Smart Data

Smart Data filters out all non-relevant PIDs and shows you a custom list of PIDs only related to the selected code. In addition, specific PIDs in the list are prearmed using known-good upper and lower trigger values.

IMPORTANT

Smart Data works best when the vehicle is idling at operating temperature with no load present. Always refer to OEM service information for specific PID range limit information.

Selecting the Smart Data card (Figure 6-11) opens the Smart Data main menu (Figure 6-12), which includes additional data list options (bottom of screen).

Selecting the Smart Data List (Figure 6-12) opens the custom code-specific PID list (Figure 6-13).
6.7.1 About Prearmed Smart Data PIDs

Features and operation of prearmed Smart Data PIDs:

- Any PID with a flag displayed has been preset and prearmed.
 - A red flag indicates the PID is operating out of range and the trigger has been activated.
 - A blue outlined flag indicates the PID is armed, and operating within its limits (trigger not activated).
- PID trigger points (upper/lower value limits) are automatically set using known-good upper/lower limit values.
 - Note - Upper/lower limit lines are not displayed on the graph, and values are not displayed in settings.
- A PID trigger is activated when the PID value exceeds the upper/lower trigger point.
- After a PID trigger has been activated a red cursor is placed on the graph and a short data movie is automatically saved.
- Smart Data PID triggers can be (overridden) set manually, see Trigger Setup on page 66 for instructions.
 - Note - Manually setting trigger values will override the preconfigured Smart Data values.
 - Note - Manually set triggers will display upper and lower trigger limit lines in the graph.

6.8 Functional Tests and Reset Procedures

Selecting the Functional Tests and Reset Procedures card (Figure 6-14) opens the Tests main menu (Figure 6-15), which displays a list of bi-directional tests and procedures related to troubleshooting the selected codes. Functional tests and reset procedures allow you to manually control certain component operations (e.g. turn fuel pump on/off) and reset certain control module values (e.g. reset fuel trim) directly from the diagnostic tool to confirm the operation of components and validate repairs.

Intelligent Diagnostics Functional Tests and Reset Procedures operation and navigation is similar to the Functional Tests within the Scanner function. For additional information see Functional Tests on page 69.

Figure 6-14

Additional Functional Tests and Reset options may be displayed at the bottom of the screen, depending on the vehicle. These options are not DTC related, but are vehicle specific related, and may be useful in troubleshooting or validating repairs.

Figure 6-15
6.9 Guided Component Tests (GCTs)

Selecting the Guided Component Tests card (Figure 6-16) opens the Components Tests main menu (Figure 6-17), which displays a menu list of tests related to the troubleshooting of the selected codes.

Intelligent Diagnostics Guided Component Tests operation and navigation is similar to the main Guided Component Tests function accessed from the Home screen. For additional information see Guided Component Tests on page 86.

Additional Component Tests may be displayed at the bottom of the screen (Figure 6-17) depending on the vehicle. These options are not DTC related, but are vehicle specific related, and may be useful in troubleshooting or validating repairs.

After a test is selected a component test sub-menu opens. The component test sub-menu may include various test options and a Component Information selection (Figure 6-18) if supported.

Guided Component Tests are tests with step-by-step instructions (Figure 6-19) to guide you through the process of performing component tests. They may include specifications, tips, and directions on how and where to connect the test meter leads. Some tests may also automatically configure the multimeter or lab scope to perform the selected test.

Selecting the View Meter icon (Figure 6-19) opens the meter/scope display (Figure 6-20) and allows you to review the guided instructions and monitor the signal simultaneously.
Selecting **Component Information** (if available) provides details on specific vehicle components to provide a better understanding of the components prior to diagnosis. The Component Information screens (**Figure 6-21**) contain information to assist you with testing. The screens are divided in sections to help quickly guide you to the correct information.

- **Operation**—provides a general description of normal component operation.
- **Connector**—displays the component connector and lists pin assignments.
- **Location**—identifies the component location and the best place for testing it.
- **Tech note**—provides Guided Component Test-related tips (for example, common failures or faults) as well as update or recall information.
6.10 Real Fixes
Select the Real Fixes card (Figure 6-22) to view a list (Figure 6-23) of code-specific procedures and tests that have been gathered from actual shop repair orders.

![Figure 6-22](image)

Figure 6-22

![Figure 6-23](image)

Figure 6-23

Select a Related Real Fix from the list (Figure 6-23) to view detailed information about the fix (Figure 6-24) in a Complaint - Cause - Correction format.

![Figure 6-24](image)

Figure 6-24

6.11 Troubleshooter
Select the Troubleshooter card (Figure 6-25) to view a list (Figure 6-26) of code-specific tips gathered from industry professionals.

![Figure 6-25](image)

Figure 6-25

Select a Related Tip from the list (Figure 6-26) to view the information.

![Figure 6-26](image)

Figure 6-26

6.12 Repair Information
Selecting the Repair Information card (Figure 6-27) opens the Repair Information service interface. For information on using Repair Information, see SureTrack® & Repair Information on page 179.

![Figure 6-27](image)

Figure 6-27
Section 7

Introduction

This section describes the basic operation, and navigation of the OBD Direct function.

OBD Direct allows you to access global OBD-II/EOBD vehicle data and tests, without having to identify the vehicle.

You can use OBD Direct to:
- Perform an OBD Health Check
- Check and clear OBD-II diagnostic trouble codes (DTCs)
- Check malfunction indicator lamp (MIL) status
- Check readiness monitor status, prior to emissions testing
- Access OBD-II modes (e.g. $01, $02, $06, $09, etc.)

NOTE

OBD Direct provides global (generic) OBD-II/EOBD information. To access enhanced OBD-II/EOBD data, select Scanner from the Home screen.

Main Topic Links

- **Main Menu** page 81
- **OBD Diagnose** page 81
 - Start Communication page 81
 - Readiness Monitors page 82
 - OBD-II Modes page 83
 - MIL Status page 83
 - Troubleshooter page 83
 - Connector Information page 84
 - Manual Protocol Selection page 84
- **OBD Health Check** page 84

7.1 Main Menu

Selecting **OBD Direct** from the Home screen opens a menu with two options (Figure 7-1):

- **OBD Diagnose** - provides access to available OBD vehicle readiness monitors, service modes, trouble codes, and data. See **OBD Diagnose** on page 81.
- **OBD Health Check** - provides quick access to check and clear codes, check the readiness monitors, and check MIL status. See **OBD Health Check** on page 84.

NOTE

To use the OBD Direct functions the Compact Scan Module (CSM) must be connected to the vehicle and communicating with the diagnostic tool.

7.2 OBD Diagnose

Selecting OBD Diagnose provides the following menu options (described in the following sections):

- Start Communication
- Connector Information
- Manual Protocol Selection

7.2.1 Start Communication

Selecting Start Communication, initiates an OBD test session.

To access OBD data and tests:

1. Select **Start Communications**.
2. Connect the Compact Scan Module to the vehicle.
3. Select **Continue**.

 - The following information may be displayed (Figure 7-1):
 - Number of ECM’s detected
The communication protocol being used
Which ECM is actively communicating
Vehicle Identification Number (VIN)

4. Select Continue.

5. Make a selection from the available service menu options (Figure 7-2). Common options are described in the following sections.

Readiness Monitors

Selecting Readiness Monitors provides the following menu options:

- **Monitors Complete Since DTC Cleared**—displays the results of all monitor tests that have run since the last time the electronic control module (ECM) memory was cleared.
- **Monitors Complete This Cycle**—displays only the results of monitor tests that ran during the current drive cycle, they reset when the ignition is switched off.

Readiness Monitors is used to check the status of the OBD-II/EOBD monitored systems. Certain emission-related OBD-II/EOBD systems are self-monitored by running continuous or periodic tests. Test results (e.g. Test Complete, Test Not Complete, Test Not Supported, etc.) are shown in the data viewer (Figure 7-3).

Functionality and toolbar options are similar to using the PID Display within Scanner.
OBD-II Modes

OBD-II Modes include emission related data and tests supported by the vehicle manufacturer. Vehicle manufacturers are not required to support all modes.

Table 7-1

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>($01) Display Current Data</td>
<td>Displays the current emission related data (PIDs) from the selected electronic control module (ECM) of the vehicle. Displayed data includes analog inputs and outputs, digital inputs and outputs, and system status information broadcast on the vehicle data stream.</td>
</tr>
<tr>
<td>($02) Display Freeze Frame Data</td>
<td>Displays freeze frame data for any stored emission related diagnostic trouble codes (DTC). In most cases the stored frame is the last DTC that occurred. Certain DTCs, those that have a greater impact on vehicle emission, have a higher priority. In these cases, the highest priority DTC is the one for which the freeze frame records are retained. Freeze frame data includes a “snapshot” of critical parameter values at the time the DTC set.</td>
</tr>
<tr>
<td>($03) Display Trouble Codes</td>
<td>Displays any stored emission related DTCs reported by the various ECMs.</td>
</tr>
<tr>
<td>($04) Clear Emissions Related Data</td>
<td>Clears all emission related diagnostic data such as, DTCs, freeze frame data, and test results from the memory of the selected ECM.</td>
</tr>
</tbody>
</table>
| ($05, 06, 07) Display Test param./Results | Opens a submenu of test parameters and test results from various sensors, monitor test results, and a record of DTCs detected during the last drive cycle. The menu includes:
- Oxygen Sensor Monitoring ($05)
- On-Board Monitored Systems ($06)
- DTCs Detected During Last Drive ($07) |
| ($08) Request Control of On-board System | Allows enable/disable control of select components, allowing you test component operation and monitor data during the test. Available options vary by make, model, and year of the test vehicle. |
| ($09) Read Vehicle Identification | Displays:
- Vehicle Identification Number (VIN)
- Calibration Identification
- Calibration Verification Number (CVN) |

MIL Status

MIL Status is used to check the current status of the malfunction indicator lamp (MIL). Additional information, such as which ECM commanded the MIL on, and also (if supported) the distance traveled while the MIL is on, can also be displayed.

Troubleshooter

Troubleshooter is a database of experience-based information that has been compiled by top-notch technicians, and contains basic information on many common diagnostic trouble codes (DTCs).

Selecting Troubleshooter opens a submenu of options (options will vary by vehicle.)
7.2.2 Connector Information

Selecting Connector Information provides you access to vehicle data link connector (DLC) location information.

To find DLC location information:
1. Select Connector Information.
2. Select a vehicle manufacturer.
3. Select a vehicle model.
 DLC location information displays.
4. Select Continue.
 A menu option to start vehicle communication, or return to the previous menu displays.
5. Select Yes or Return.

7.2.3 Manual Protocol Selection

A communication protocol is a standardized way of transmitting data between an ECM and a scan tool. Normally the scan tool automatically connects to an available protocol, which displays on the connection message (Figure 7-1). Some vehicles communicate using more than one protocol, therefor the Manual Protocol Selection option is used to switch to a different protocol.

Selecting Manual Protocol Selection displays a warning message advising you to make sure you know the correct protocol for the test vehicle before continuing. An incorrect selection may activate warning lamps, and set CAN related faults on the vehicle.

Selecting OK displays a menu of protocol options (Figure 7-4).

Select the desired protocol to continue.

7.3 OBD Health Check

The OBD Health Check option is intended as a time-saver, allowing you to quickly access a few key global OBD-II services.

The OBD Health Check menu (Figure 7-5) options include the following (descriptions are provided in the following sections):

- Check global diagnostic trouble codes (DTCs)
- Clear global diagnostic trouble codes (DTCs)
- Check readiness monitors, see Readiness Monitors on page 82
- Check MIL Status, MIL Status on page 83

7.3.1 Global OBD II Code Check

Global OBD II Code Check displays any stored emission related generic DTCs reported by the ECM. Two menu options are available:

- Codes
- Pending Codes

Codes

Codes displays a list of current emission related DTCs. OBD-II/EOBD Codes have a priority according to their emission severity, with higher priority codes overwriting lower priority codes. The priority of the code determines the illumination of the MIL and the code erase procedure. Manufacturers rank codes differently, so expect to see differences between makes.
Pending Codes

Pending Codes enables the scan tool to obtain “pending” or maturing diagnostic trouble codes. These are codes whose setting conditions were met during the last drive cycle, but need to be met on two or more consecutive drive cycles before the DTC actually sets.

The intended use of this service is to assist after vehicle repair and after clearing diagnostic information, by reporting test results after a single driving cycle.

- If a test failed during the driving cycle, the DTC associated with that test is reported. If the pending fault does not occur again within 40 to 80 warm-up cycles, the fault is automatically cleared from memory.
- Test results reported by this service do not necessarily indicate a faulty component or system. If test results indicate another failure after additional driving, then a DTC is set to indicate a faulty component or system, and the MIL is illuminated.

7.3.2 Global OBD II Clear Codes

Global OBD II Clear Codes clears all emission related diagnostic data such as, DTC records, freeze frame data, and test results, from ECM memory. Although OBD Direct only displays generic OBD-II data, clearing codes erases all of the stored data including any enhanced codes.

A confirmation screen displays when the clear codes option is selected to prevent accidental loss of data. Select Yes on the confirmation screen to continue.
Introduction

Selecting Guided Component Tests provides you with an extensive collection of vehicle specific component tests and reference information for engine, transmission, ABS, charging, transfer case, and suspension systems. It is like having access to a complete library of automotive repair manuals for testing multiple vehicle components.

The preconfigured meter tests and reference information provided are vehicle specific and designed to help save you diagnostic time, verify faulty components, and verify the repair.

Detailed instructions and reference information are provided to guide you through the testing process, from locating the component, to selecting the appropriate test, showing test lead connections, and illustrating electrical connector and pin configurations. In addition, test results (including waveform examples), procedures, tips, and specifications may also be provided.

NOTE

Availability of tests and information may vary.

8.1 Safety Information

WARNING

Risk of electrical shock.

- Read the *Important Safety Instructions* document provided separately for messages on the safe use of this product.
- This product is intended for Measurement Category I (for example, automotive 12V systems), do not use this product for Measurement Categories II, III, and IV.
- Measurement Category I is for performing measurements on circuits not directly connected to MAINS or MAINS circuits (an example of a MAINS circuit is 120V AC or 240V AC household or industrial electricity), do not connect this product to MAINS or MAINS circuits.
- Do not apply the Black Ground Lead to test points other than ground/system return/vehicle chassis.

Electrical shock can cause personal injury, equipment damage, and/or circuit damage.

IMPORTANT

Maximum rated transient over voltage impulse is 500 volts, do not exceed the rated transient over voltage.
8.2 General Information

8.2.1 Configuring the Favorites List

Once a Guided Component Test database is loaded, a list of manufacturers displays. This list is often long and includes makes that are not frequently used. A toolbar at the top of the screen allows you to custom configure the manufacturer list to display only the makes you frequently service.

To configure a favorites list:

1. Select Configure Favorites on the toolbar. A list of selectable manufacturers displays.

2. Select each manufacturer you want to include, selected manufactures are highlighted.

 NOTE

 Manufacturers appear on the favorites list in the order in which they are selected. Therefore, if you select the makes you work on most frequently first, they will appear at the top of the list.

3. Select Finished on the toolbar once your selections have been made. The screen returns to the manufacturer list, but only the makes you selected display. Note the “Favorites” toolbar selection now reads “Full list”.

4. Select Full List on the toolbar to view the complete list of manufacturers.

5. Select Back on the toolbar at any time to return to the previous screen.

Your favorites list is what will display whenever a Guided Component Test database is started in the future. The list can be modified at any time by selecting Configure Favorites from the toolbar.
8.2.2 Menu Icon

Selecting the **Menu** icon from the lower toolbar provides the following options:

- **See File on page 88**
- **Help**—See **Help** on page 31 for additional information.

File

Selecting **File** opens a menu of print options: (See **Printing / Printer Setup**)

- **Print Article**—selecting has one of two results:
 - If a printer is connected, the file is sent to the printer.
 - If a printer is not connected, the article is saved as a (.xps) file, which can be retrieved, moved, or copied and printed at a later time.
- **Print Preview**—opens a representation of what the printed file will look like.
- **Page Setup**—allows you to adjust margins and paper orientation.

8.2.3 Training and Classes

Training and Classes is a companion feature to the Guided Component Tests function, and can be selected from the vehicle make menu (**Figure 8-3**), select **Training and Classes**. This resource includes a wide collection of common (non-vehicle specific) reference information and tests, such as measuring fuel pump current ramp, and monitoring CKP and CMP signals simultaneously. Also included are; basic component operation and theory information, testing procedures, tips, definitions, illustrations, diagnostic tool feature descriptions, and accessory information.

![Figure 8-3](https://example.com/image.png)

NOTE

The information listed in the following sections is not inclusive, actual content may vary.

Power User Tests

Power User Tests provide you quick access to preconfigured meter tests for a number of common automotive system tests. Most tests provide onscreen help and testing information along with a description of the test and the expected results, including known good waveforms.

Here is a sample listing of the types and specific tests that may be available within Power User Tests:

- **Current Probe Tests** - provides common tests configured to use the Snap-on Low Amp Current probes or generic Low Amp Current probes. Snap-on Low Amp Current Probe operation information is also provided within the **Snap-on Low Amp Probe Reference Manual** option.
 - Fuel Injector Current Ramp (multiple types)
Guided Component Tests

- Fuel Pump Current Ramp
- Fuel Pump RPM Calculation
- Ignition Coil Current Ramp (multiple types)
- Parasitic Draw
- Snap-on Low Amp Probe Reference Manual

Two Channel Tests - provides common tests configured to measure or compare two signals
- CAN-BUS High/Low
- CKP and CMP Relationship
- EGR Solenoid and Position Sensor
- EVAP Solenoid and Diagnostic Switch
- FlexRay Bus
- Injector and Oxygen Sensor
- Knock Sensor and EST
- MC Dwell and Oxygen Sensor
- Pre and Post Cat Oxygen Sensors
- Throttle Positions 1 & 2
- WSS (Hall Effect Type)

Transducer Tests - provides common single and dual channel tests configured to measure various types of pressures, voltage and current. Transducers are available as optional equipment.
- A/T Line Pressure and Shift Solenoid
- A/T Line Pressure Test
- EGR Temperature Sensor and EGR Vacuum
- Exhaust Back Pressure Test
- Fuel Pressure and Fuel Pump Current
- Fuel Pressure and Fuel Pump Voltage
- Fuel Pressure Test

Secondary Ignition Tests - provides common information and tests configured to measure secondary ignition output of various types. Secondary ignition lead adapters are available as optional equipment.
- Coil near plug
- Coil on plug
- Conventional
- Distributorless

How To Guide

The **How To** option provides multiple topics and references ranging from instructional and basic theory to troubleshooting and testing instructions. Menu options may include:

- **10-minute Electronic Classes**—provides basic electrical theory and testing information. Topics may include:
 - Ohm’s Law
 - Variable Resistors
 - Amperage
 - Diode Continuity
 - Electrical Circuits
 - Guided Voltage Drop Test
 - Other Electrical Measurements
 - Resistance
 - Scientific Notation
 - Voltage

- **15-minute Ignition Class**—provides basic introductory ignition system information. Topics may include:
 - Introduction
 - Coil on Plug (COP)
 - Conventional
 - Waste Spark

- **Illustrated Terms & Definitions**—provides common term definitions, illustrations, and tips associated with automotive component testing.

- **No-Start Basics**—provides basic step-by-step procedures for the diagnosis of a no-start condition on carbureted and fuel injected vehicles.

- **O2 Sensor & Feedback System Analysis**—provides basic definition and theory information for the following O2 sensor topics:
 - Air Fuel Ratio Sensors
 - Correct PCM Response (includes configured meter test)
 - Heated Oxygen Sensor
 - Non-Heated Oxygen Sensor
 - Open and Closed Loop
 - Oxygen Sensor Types
 - Understanding Oxygen Sensors (includes configured meter test)

- **Snap-on Automotive Theory**—provides basic theory information on multiple topics including:
 - Air Conditioning
 - Diagnosing Battery Draws
Guided Component Tests

• Diesel Particulate Filters
• Electronic Parking Assistance
• HID Headlights
• Hybrid Vehicles
• LIN-BUS
• Supplemental Restraint Systems
• Tire Pressure Monitoring (TPMS)

• **Test Tips**—provides basic testing information, tips and procedures for specific tests and meter operations. Topics may include:
 - Alternator Ripple Test
 - EVP Sensor Test
 - Frequency, Pulse Width and Duty Cycle Test
 - Graphing AC Voltage
 - Injector Pulse Width Test
 - Parasitic Draw Test
 - Reading Pulsed DTC’s
 - TPS Sweep Test
 - Using Cursors
 - Using Pressure Transducers
 - Using Triggers
 - Wiggle Test
 - Zirconia Oxygen Sensor Rise Time

• **Theory and Operation**—provides basic theory information for the following topics:
 - Oxygen Sensors and Relays

• **20-minute Current Ramp Classes**—provides an introduction to current ramp testing using the Snap-on Low Amp Current Probes. Snap-on Low Amp Current Probe operation information is also provided within the *Snap-on Low Amp Probe Reference Manual* option. Topics may include:
 - Fuel Injector Current Ramp (multiple types)
 - Fuel Pump Current Ramp
 - Fuel Pump RPM Calculation
 - Ignition Coil Current Ramp (multiple types)
 - Parasitic Draw
 - Snap-on Low Amp Probe Reference Manual
 - Using Fuse Box for Current Test Hard to Reach Wiring

Features and Benefits

Selecting **Features and Benefits** provides basic feature description and operational information about the diagnostic tool. Additional information is provided for ShopStream Connect, optional waveform demonstration boards and optional accessories. Selections include:

• **5-Minute Walk Thru With Demo Board**—provides instructions on the operation of the optional waveform demonstration board(s) to sharpen your Lab Scope and Meter skills. Topics may include:
 - New Demo Board (PN) #EESX306A—provides functionality information and basic step-by-step demonstration information of multiple generated waveforms. The optional demonstration board(s) generate various waveforms similar to signals commonly found on modern vehicle control systems. The demonstration board(s) not only help you learn how to use the Guided Component Tests software, it allows you to hone your skills and diagnostic techniques without connecting to an actual vehicle. Contact your sales representative for details.

• **Accessories**—provides descriptions for the optional accessories available for the diagnostic tool. Accessory topics may include:
 - Low Amp Probe
 - Pressure/Vacuum Transducers
 - ShopStream Connect
 - Test Leads and Clips

• **Product Description**—provides an overview of diagnostic tool capabilities and operations.
8.3 Vehicle Identification

Guided Component Test information is vehicle specific, therefore a vehicle must be identified first.

Identifying a vehicle:
1. Identify the vehicle. The vehicle identification process is the same as the process used for the Scanner function, see Identifying the Vehicle on page 43 for additional information.

NOTE
Selecting All Others (Global) from the vehicle make list allows you to use the Guided Component Tests function without identifying a vehicle. General (non-vehicle specific) testing information is provided.

Once the vehicle is identified, a menu displays available systems and components to test.
2. Make a selection to continue.

3. Continue to follow the screen prompts to make your desired selection. Final menu options include two typical selection types (descriptions are provided in the following sections):
 - Component Information on page 91
 - Tests on page 92

8.4 Component Information

Component Information provides specific operational information (if available) on the selected component, and may also include electrical connector and pin location and function details.

The Component Information screen (Figure 8-5) contains information to assist you with testing, and is divided into sections:
- **Operation**—provides a general description of normal component operation.
- **Connector**—displays the component connector and lists pin assignments.
- **Location**—identifies the component location and the best place for testing it.
- **Tech note**—provides Guided Component Test-related tips (for example, common failures or faults) as well as update or recall information.

![Figure 8-4 Typical System menu options](image)

![Figure 8-5 Typical Component Information screen](image)
8.5 Tests

Tests provide specific instructions (if available) to help you perform tests on components. Selecting a component test opens a preconfigured meter to start the test, and typically also provides connection instructions, specifications, and testing tips.

A typical Test screen (Figure 8-6) may contain multiple test options, and information to assist you perform the test.

![Figure 8-6 Typical Signature Test screen](image)

NOTE

Test screens and menus will vary, and in some instances more than one selection may be available and/or open a submenu.

Test screens may contain icons and hyperlinks that link to other supporting information or open test screens. Common links are:

- View Meter—see View Meter on page 92
- Show More Information—opens a new screen with additional information.

8.5.1 View Meter

View Meter opens a live meter set up to perform the test in the lower portion of the screen (Figure 8-7). Once the meter view is open, the Guided Component Test toolbar at the top of the screen is replaced by the Scope Multimeter toolbar, which allows you to make adjustments to the settings. See Scope/Meter (Upper) Toolbar on page 104 for toolbar icon information.

The Meter icon, is only available Guided Component Test view meter mode (Figure 8-7).

![Figure 8-7 Sample view meter window](image)

Three view meter options are available:

1. With View Meter active (Figure 8-7), select the Meter icon on the toolbar once and the meter expands to fill the entire screen.
2. Select the Meter icon a second time and the meter will open as a separate window (Figure 8-8). This window can remain open if you switch to the Scan Module and can be accessed from the Windows toolbar at the bottom of the screen. You can also resize and reposition the meter window on the screen.
3. Selecting the Close icon (X) when viewing the meter in a separate window closes the meter and returns you to the Guided Component Test screen.

3. Select the Meter icon a third time to close the separate window and return to the standard meter view as shown in Figure 8-7.

Select Exit from the toolbar to close meter view and return to the Guided Component Test screen.

8.5.2 Performing a Test

To perform a Meter Test follow the on-screen instructions to connect the test leads to the component. Follow the instructions carefully, as certain Guided Component Tests require the use of specific leads.

Once the leads are connected, select the View Meter icon to display the results. Review the on-screen information to verify the test results.
Section 9

Scope and Multimeter Operations

Introduction

This section describes the basic operation and navigation of the Scope Multimeter function.

Selecting Scope Multimeter provides access to all the tools needed for performing electrical circuit tests and monitoring signals. The Scope Multimeter function works interactively with other functions. Selecting “View Meter” from a Guided Component Test or Scanner Test opens the Scope Multimeter function.

In situations where the testing connection points are not easily accessible, the Scope Module easily separates from the diagnostic tool (connected via extended length USB cable) allowing you to monitor the results remotely.

9.1 Main Topics Links

(Select topic to link to section)
- Capturing Data page 123
- Component Locations page 96
- Control Panel and Settings page 111
- Control Panel (Trace Controls Quick Reference) page 112
- Cursors page 122
- Digital Multimeter (DMM) page 98
- Getting Started page 100
- Graphing Multimeter (GMM) page 98
- Ignition Scope page 129
- Lab Scope page 99
- Main Screen and Toolbars page 104
- Pairing and Hardware Status Icons page 102
- Tests and Capabilities (Quick Reference) page 96
- Test Leads and Accessories page 140
- Testing Capabilities page 96

9.2 Safety

Risk of electrical shock.
- Read the Safety Information provided for important warnings on the use of this product
- This product is intended for Measurement Category I (for example, automotive 12V systems), do not use this product for Measurement Categories II, III, and IV.
- Measurement Category I is for performing measurements on circuits not directly connected to MAINS or MAINS circuits (an example of a MAINS circuit is 120V AC or 240V AC household or industrial electricity), do not connect this product to MAINS or MAINS circuits.
- Do not apply the Black Ground Lead to test points other than ground/system return/vehicle chassis.

Electrical shock can cause personal injury, equipment damage, and/or circuit damage.

Maximum rated transient over voltage impulse is 500 volts, do not exceed the rated transient over voltage.
9.2.1 Measurement Out of Range Indicator

A group of arrows display when a measurement is out of range for the scale selected:

- Arrows pointing UP—measurement over maximum range
- Arrows pointing DOWN—measurement under minimum range

Voltage measurements also display arrows in place of live values when the voltage exceeds the input rating of the meter.

Figure 9-1

[Arrows pointing up]

WARNING

Risk of electrical shock.

- Do not exceed voltage limits between inputs as indicated on the rating label.
- Use extreme caution when working with circuits that have greater than 40 volts AC or 24 volts DC.

Electrical shock can cause personal injury, equipment damage, and/or circuit damage.

IMPORTANT

If arrows are displayed in the live voltage values, discontinue circuit testing.

Correct an out-of-range condition by selecting a scale setting appropriate for the signal being sampled. See *Trace Controls Menu on page 105* for more information.

9.3 Technical Specifications (Scope Module)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description / Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Power</td>
<td>5V @ 500mA (supplied by diagnostic tool)</td>
</tr>
<tr>
<td>Agency Approval - Rating</td>
<td>IEC 61010-1, UL Listed 61010-1 - Category 1</td>
</tr>
<tr>
<td>Width</td>
<td>6.3 in. (160 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>4.6 in. (118 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>1.1 in. (28 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.62 lb (0.28 kg)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>At 0 to 90% relative humidity (non-condensing)</td>
</tr>
<tr>
<td></td>
<td>32 to 113°F (0 to 45°C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>At 0 to 70% relative humidity (non-condensing)</td>
</tr>
<tr>
<td></td>
<td>–4 to 140°F (~–20 to 60°C)</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Maximum 2000 m</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>This product is intended for indoor use only</td>
</tr>
<tr>
<td></td>
<td>This product is rated for Pollution Degree 2 (normal conditions)</td>
</tr>
</tbody>
</table>
9.4 Component Locations

1. Auxiliary (DB9) Connector The auxiliary connector is used for connection of the optional RPM inductive pickup and the pressure transducer split lead adapter. For additional information contact your sales representative, and see Using the Scope Module Extension Cable on page 101.

2. Channel 4 Jack
3. Channel 3 Jack
4. Channel 2 Jack
5. Channel 1 Jack
6. Common (Ground) Jack

Figure 9-2 Scope Module, removed from Diagnostic Tool

9.5 Testing Capabilities

The following sections provide a general overview of the testing capabilities of the Scope Multimeter:

- Digital Multimeter (DMM)
- Graphing Multimeter (GMM)
- Lab Scope
- Ignition Scope
- Presets

9.5.1 Tests and Capabilities (Quick Reference)

The following chart lists the available DMM, GMM, and Lab Scope tests.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>D M M</td>
<td>G M M</td>
</tr>
<tr>
<td>Four Channel Lab Scope</td>
<td>Displays four Lab Scope channels automatically.</td>
</tr>
<tr>
<td>Four Channel Graphing Meter</td>
<td>Displays four Graphing Multimeter channels automatically.</td>
</tr>
<tr>
<td>Ignition Probe</td>
<td>Measures secondary Ignition voltage 2 to 50kV. Displays secondary ignition (kV) waveforms.</td>
</tr>
<tr>
<td>Volts DC</td>
<td>Measures DC (direct current) voltage. DC voltage is measured through test leads connected to a DC circuit.</td>
</tr>
<tr>
<td>Volts DC - Average</td>
<td>Measures DC voltage using a filter to determine the average voltage over a period in time. DC voltage is measured through the two test leads connected to a DC circuit.</td>
</tr>
<tr>
<td>Volts AC RMS</td>
<td>Measures the effective AC voltage, not the peak voltage which results in measurements with higher accuracy. The AC RMS (root mean square) voltage value can be defined as the equivalent DC voltage of the AC voltage measured. RMS values are commonly used in AC electrical measurement, as they are more representative of DC measurements.</td>
</tr>
</tbody>
</table>

NOTE

Not all the tests listed are described in this manual. This list is intended as reference only.
Scope and Multimeter Operations

Technical Specifications (Scope Module)

<table>
<thead>
<tr>
<th>Test</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohms</td>
<td>Measures electrical resistance (opposition to current) 0 to 4 M Ohms. Scope supplied DC current is passed through the circuit to measure the resistance between the two connected test leads.</td>
</tr>
<tr>
<td>Diode/Continuity</td>
<td>Measures voltage drop across a diode and continuity through a diode. Scope supplied DC current is passed through the diode to measure the voltage drop between the two connected test leads. Typical setup for positive to negative current flow - positive lead (anode +/side) and negative (cathode -/side).</td>
</tr>
<tr>
<td>Frequency</td>
<td>Measures the number of times a signal repeats itself per second. Used to measure frequency of signals such as CKP, CMP and wheel speed sensors.</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>Measures the on-time of various components (e.g. components that cycle on and off like the EGR, or canister purge valve).</td>
</tr>
<tr>
<td>Injector Pulse Width</td>
<td>Measures fuel injector on-time when checking for variances when engine load is changed and/or physical problems with the injector.</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>Measures the ratio of the pulse width to the complete cycle width, the on-time of components that cycle on and off like EGR, or canister purge from 0–100%.</td>
</tr>
<tr>
<td>Low Amps (20)</td>
<td>Used to measure amperage of typical devices (e.g. ignition coils, injectors, fuel pumps) that may draw up to 20A peak (startup) when initially started. Also used to measure parasitic draw.</td>
</tr>
<tr>
<td>Low Amps (40)</td>
<td>Used to measure amperage of typical motors and devices that may draw up to 40A peak (startup) when initially started.</td>
</tr>
<tr>
<td>Low Amps (60)</td>
<td>Used to measure amperage of larger motors and devices that may draw up to 60A peak (startup) when initially started.</td>
</tr>
<tr>
<td>MC Dwell (60)</td>
<td>Measures carburetor Mixture Control Solenoids (0–60°). The duty cycle of the solenoid is expressed in the dwell angle of a 6 cylinder engine: 100% = 60 deg.</td>
</tr>
<tr>
<td>MC Dwell (90)</td>
<td>Measures fuel system Mixture Control Solenoids (0–90°). The duty cycle of the solenoid is expressed in the dwell angle of a 4 cylinder engine: 100% = 90 deg.</td>
</tr>
<tr>
<td>100 PSI Vacuum</td>
<td>Used to measure vacuum up to 20 in.Hg, using the 0–100 psi transducer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PSI Pressure</td>
<td>Used to measure pressures for typical systems such as, fuel, oil, EVAP, hydraulic/transmission fluid etc. up to 100 psi, using the 0–100 psi transducer.</td>
</tr>
<tr>
<td>500 PSI Pressure</td>
<td>Used to measure pressures for typical systems such as, hydraulic/transmission fluid pressure, cylinder compression, and AC high side up to 500 psi, using the 0–500 psi transducer.</td>
</tr>
<tr>
<td>5000 PSI Pressure</td>
<td>Used to measure pressures for typical systems such as, ABS, power steering, and heavy-duty hydraulic system fluid up to 5000 psi, using the 0–5000 psi transducer.</td>
</tr>
</tbody>
</table>
9.5.2 Digital Multimeter (DMM)

The digital multimeter gives you the ability to quickly make precise common electrical measurements (e.g., DC and AC voltage, resistance and amperage) on circuits and components to verify operation. The meter displays measurements in a digital numerical format, and is typically used for measuring signals that are not rapidly changing.

The DMM is ideal for performing basic tests on most standard automotive circuits, and displays the results in a large easy to see format.

To use the DMM, select the Scope Multimeter icon from the home screen, then select Digital Multimeter from the menu. See Tests and Capabilities (Quick Reference) on page 96 for a list of available testing functions.

DMM Specifications

<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Accuracy/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Measurement</td>
<td>Ch. 1—yellow jack</td>
<td>Channel 1 input is referenced to common ground (GND—black jack)</td>
</tr>
<tr>
<td>VDC (Full Scale)</td>
<td>75VDC</td>
<td>Do not measure greater than 75VDC</td>
</tr>
<tr>
<td>VAC (Full Scale)</td>
<td>50VAC</td>
<td>Do not measure greater than 50VAC (rms)</td>
</tr>
<tr>
<td>Signal Measurement Input Impedance</td>
<td>10 MΩ</td>
<td>-</td>
</tr>
<tr>
<td>Ohm Measurement Diode Test Continuity Test</td>
<td>Ch. 3—blue jack Ch. 4—red jack</td>
<td>-</td>
</tr>
<tr>
<td>Ohms</td>
<td>40 Ω–4 MΩ</td>
<td>Fixed scales or Auto Ranging</td>
</tr>
<tr>
<td>Glitch capture</td>
<td>Approximately 50 uS</td>
<td>-</td>
</tr>
<tr>
<td>Diode Test</td>
<td>2 V Scale</td>
<td>-</td>
</tr>
</tbody>
</table>

9.5.3 Graphing Multimeter (GMM)

Unlike the DMM, the graphing multimeter plots a visual graphing line of the signal instead of displaying digital values. The GMM displays a signal’s measurements over time on a two-dimensional grid. This plotted graph is basically a graphical history (histogram) of the signal’s measurements over time.

The GMM uses a higher sample rate (than a DMM) to calculate signal measurements. This characteristic along with the visual graph, make the GMM ideal for finding intermittent dropouts or glitches that may not be obvious when viewing a digital value. A key advantage of the GMM is being able to capture a signal over a long time interval and then review it’s graphical history, to visually see if and when dropouts have occurred.

In addition, the GMM uses a combination of filter and peak detect modes to provide a good balance between detecting fast glitches and preventing unwanted noise from displaying.

Unlike the lab scope, the sweep scales used with typical GMM tests are of longer time intervals, and may range from seconds to minutes, compared to the lab scope sweep scales that use relatively short time intervals (e.g., milli and microseconds). This allows you to monitor a signal over a longer period of time when looking for erratic glitches or dropouts.

To use the GMM, select the Scope Multimeter icon from the home screen then select Graphing Multimeter from the menu. See Tests and Capabilities (Quick Reference) on page 96 for a list of available testing functions.
GMM Specifications

<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Accuracy/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Measurement</td>
<td>Ch. 1—yellow jack</td>
<td>Each channel input is referenced to common ground input (GND—black jack)</td>
</tr>
<tr>
<td></td>
<td>Ch. 2—green jack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 3—blue jack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 4—red jack</td>
<td></td>
</tr>
<tr>
<td>Sample Rate</td>
<td>1.5 MSPS</td>
<td>Continuous sampling, MSPS = mega samples per second</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC–3 MHz</td>
<td>3 db point @ 3 MHz</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 MΩ @ DC 4 kΩ @ 3 MHz</td>
<td>Channel 1–4</td>
</tr>
<tr>
<td>VDC (Full Scale)</td>
<td>75VDC</td>
<td>Do not measure greater than 75VDC</td>
</tr>
<tr>
<td>VAC (Full Scale)</td>
<td>50VAC</td>
<td>Do not measure greater than 50VAC (rms)</td>
</tr>
<tr>
<td>Ohm Measurement</td>
<td>Ch. 3—blue jack (–)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ch. 4—red jack (+)</td>
<td></td>
</tr>
<tr>
<td>Diode Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohms</td>
<td>40 Ω—4 MΩ</td>
<td>Fixed scales</td>
</tr>
<tr>
<td>Low Amp Probe</td>
<td>20A scale (100mV/Amp)</td>
<td>Connect the positive (+) Amp Probe lead to the yellow jack on the diagnostic tool for values on Ch.1, or to the green jack for values on Ch. 2. Connect the negative (–) lead to GND (black jack)¹.</td>
</tr>
<tr>
<td></td>
<td>40A scale (10mV/Amp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60A scale (10mV/Amp)</td>
<td></td>
</tr>
</tbody>
</table>

¹ Do not use the Low Amp Probe to measure current on conductors at a potential greater than 46VAC peak or 75VDC.

9.5.4 Lab Scope

Similar to the GMM, the lab scope (oscilloscope) plots a visual image line of a signal’s measurements over time on a two-dimensional grid. The visual line that is displayed is commonly called a trace, and the graphical form created by a signal is called a waveform.

Unlike the DMM the lab scope allows you to visually see a signal’s waveform, which in turn allows you to see the strength and shape of the signal, as well as any noise that may be occurring in the circuit. The lab scope also samples signals at a high rate, which allows you to see a higher level of detail in shorter samples of the signal, especially in signals that change rapidly. In addition, the lab scope also provides more control over the acquisition of the signal and in how it is displayed through the use of triggers and channel controls. All of these features allow you to analyze signals in great detail when performing diagnostics.

To use the lab scope, select the Scope Multimeter icon from the home screen then select Lab Scope from the menu. See Tests and Capabilities (Quick Reference) on page 96 for a list of available testing functions.

Lab Scope Specifications

<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Accuracy/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Measurement</td>
<td>Ch. 1—yellow jack</td>
<td>Each channel input is referenced to common ground input (GND—black jack)</td>
</tr>
<tr>
<td></td>
<td>Ch. 2—green jack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 3—blue jack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 4—red jack</td>
<td></td>
</tr>
<tr>
<td>Sample Rate</td>
<td>For 50uS sweep</td>
<td>Continuous sampling, (MS/s) = mega samples per second</td>
</tr>
<tr>
<td></td>
<td>6MSPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For 100uS sweep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3MSPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For all other sweeps 1.5 MSPS</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC–3 MHz</td>
<td>3 db point @ 3 MHz</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 MΩ @ DC 4 kΩ @ 3 MHz</td>
<td>Channel 1–4</td>
</tr>
<tr>
<td>VDC (Full Scale)</td>
<td>100mV–400V</td>
<td>Do not measure greater than 75VDC</td>
</tr>
<tr>
<td>VAC (Full Scale)</td>
<td>100mV–400V</td>
<td>Do not measure greater than 50VAC (rms)</td>
</tr>
<tr>
<td>Low Amp Probe</td>
<td>20A scale (100mV/Amp)</td>
<td>Connect Low amp Probe (+) to Ch. 1 (yellow jack) and (–) to GND input (black jack)¹.</td>
</tr>
<tr>
<td></td>
<td>40A scale (10mV/Amp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60A scale (10mV/Amp)</td>
<td></td>
</tr>
</tbody>
</table>

¹ Do not use the Low Amp Probe to measure current on conductors at a potential greater than 46VAC peak or 75VDC.

NOTE

200V to 400V scales are not to be used to measure signals greater than 50VAC (rms) or 75VDC. Do not use the Scope/Meter to measure greater than 50VAC (rms) or 75VDC.
9.6 Getting Started

9.6.1 Selecting a Function

To start the scope multimeter:

1. Select the Scope Multimeter icon on the Home screen.
 - Digital Multimeter (DMM)
 - Graphing Multimeter (GMM)
 - Lab Scope
 - Ignition Scope (Secondary Ignition Tests)
 - Presets
 A submenu of scope or meter configuration will display.
2. Select a configuration to continue.

NOTE

The following topics in this section primarily describe the general setup and control operations for the Lab Scope and Graphing Multimeter functions. The Digital Multimeter is not covered as setup and operations are intuitive.

3. For information on the Ignition Scope function, see Ignition Scope on page 129.
4. For information on the Presets function, see Presets on page 140.

9.6.2 Test Lead / Probe Connection

Standard “safety type” test lead jacks are located on the top of the diagnostic tool, and are compatible with many test leads and probes. Insert the applicable test lead or probe terminal end into the jack to complete the connection.

For information on test leads, see Test Leads and Accessories on page 140.

IMPORTANT

To avoid damaging test leads, do not pull on the wire when removing the leads from their jacks. Pull only on the lead terminal end.

1. Auxiliary (DB9) Connector The auxiliary connector is used for connection of the optional RPM inductive pickup and the pressure transducer split lead adapter. For additional information contact your sales representative and see, Using the Scope Module Extension Cable on page 101.
2. Channel 4 Jack
3. Channel 3 Jack
4. Channel 2 Jack
5. Channel 1 Jack
6. Common (Ground) Jack

Figure 9-3 Scope Multimeter Test Lead Jacks
9.6.3 Using the Scope Module Extension Cable

In situations where the testing connection points are not easily accessible, the Scope Module easily separates from the diagnostic tool (connected via extended length USB cable) allowing you to monitor the results remotely. This increases the range of mobility for the diagnostic tool while monitoring signals on the test vehicle. Use the Type A/B USB cable, which is provided with your kit, to make the connection.

NOTE

When used remotely, the scope module must be connected to the lower (black) USB jack on the diagnostic tool.

As general practice, the Scope Module should only be undocked from the diagnostic tool when it is off. To prevent accidental loss of data, make it a practice to first save the current data if desired, then select either the **Power Off** or **Back** icon from the Scope Multimeter toolbar to stop meter operation. Power Off saves the current settings, but does not save data.

NOTES

If the Scope Module:
- Is undocked from the diagnostic tool when it is on, or
- Is exposed to a electro static discharge (ESD) while it is being used remotely

the following will occur:

- Communication between the diagnostic tool and the Scope Module will be terminated.
- All current data and settings will be lost.
- An error message (e.g. **Meter/Scope Not Found**) will display to indicate that Scope Module communication has terminated.

When communication is reestablished (after a communication loss), the Scope Multimeter application is restarted and the Scope Multimeter main menu page is displayed.

To setup the Scope Module for remote operation:

1. Depress the Scope Module release tab located on the top of the diagnostic tool (Figure 9-4).

![Figure 9-4 Scope Module release tab](image)

2. Slide the Scope Module off of the diagnostic tool.
3. Locate the USB jack on the bottom of the Scope Module (Figure 9-5).

![Figure 9-5 Scope Module USB jack location](image)

4. Connect the square end of the USB cable to the jack on the Scope Module.

NOTE

When used remotely, the Scope Module must be connected to a USB jack on the diagnostic tool.

5. Connect the rectangular end of the USB cable to a USB port on the diagnostic tool.

The Scope Module is now ready for remote use.
9.6.4 Pairing and Hardware Status Icons

When the Scope Module is connected (docked or USB cable), it automatically pairs with the diagnostic tool.

To check the paired status of the Scope Module:

1. Select System Settings > Paired Devices.
 The paired devices screen opens (Figure 9-6).

The Paired Devices screen lists all of the devices paired to the diagnostic tool, and also indicates whether or not there is active communication occurring.

 The Scope Module will be listed as SCOPE MODULE M4 or similar.

![Figure 9-6 Typical Paired Devices screen](image)

If the Scope Module is not shown in the Paired Devices list, check to make sure it has a good connection. Use the Hardware Status list to determine connection status, see Hardware Status Icons on page 102.

<table>
<thead>
<tr>
<th>Status/Icon</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Paired</td>
<td>Indicates the Scope Module is not paired or connected to the diagnostic tool. Pair the Scope Module to the diagnostic tool. See Pairing and Hardware Status Icons on page 102 for instructions.</td>
</tr>
<tr>
<td>Paired and Communicating</td>
<td>Indicates the Scope Module is connected and allowing communication.</td>
</tr>
<tr>
<td>Paired but Not Communicating</td>
<td>Indicates the Scope Module USB cable is not connected, or is connected but not allowing communication. Check to ensure the Scope Module is properly connected with the USB cable.</td>
</tr>
</tbody>
</table>

Hardware Status Icons

The hardware status indicators in the lower-right corner of the Home screen provide a quick reference to connection status.

![Figure 9-7 Home screen - Hardware status icons](image)
9.6.5 Test Lead / Probe Calibration

Certain tests may display a confirmation prompt asking “Do you wish to calibrate this probe?” before continuing with the test. As general practice, it is important to ensure the test probe is calibrated before testing, to ensure accurate results.

Typical resistance, pressure, and vacuum tests will display the calibration message, reminding you to calibrate the probe. To perform the probe calibration, select Yes at the prompt (Figure 9-8) and continue to follow the onscreen instructions to complete the calibration.

Example: For the ohms (resistance) calibration process, once completed, zero ohms should be displayed (Figure 9-9) when the leads are connected together. When the leads are separated, the upward arrows on the display indicate infinite resistance or an open circuit.
9.7 Main Screen and Toolbars

The scope/meter screens typically include the following sections (Figure 9-10):

1. **Scope/Meter Toolbar** - contains various navigational, and control icons
2. **Main Body** - contains the meter/scope display
3. **Control Panel** - contains channel/trace controls [Control Panel and Settings on page 111]
4. **Lower Toolbar** - includes icons to navigate through paused data

![Figure 9-10 Scope Multimeter screen layout](image)

9.7.1 Scope/Meter (Upper) Toolbar

The Scope/Meter toolbar is used to set up the tool for testing and to configure the settings for each trace. The following table provides brief descriptions of the control icons on the toolbar:

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td>Switches the display between three states. See Display Modes on page 111.</td>
</tr>
<tr>
<td>Cursors</td>
<td></td>
<td>See Cursors on page 122.</td>
</tr>
<tr>
<td>Refresh</td>
<td></td>
<td>Clears the minimum, maximum and live measurements displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uses:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Track the variation in a component or circuit under a certain condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the condition changes, Refresh lets you start tracking again to see the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Verify that a connection problem you found by looking for a dropout or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spike in min/max values has been fixed.</td>
</tr>
<tr>
<td>File</td>
<td></td>
<td>Allows you to select options for saving data. See Saving Data on page 128.</td>
</tr>
<tr>
<td>Print</td>
<td></td>
<td>Opens a standard Windows Print dialog box that allows you to configure and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>print data. See Printing / Printer Setup..</td>
</tr>
<tr>
<td>Power Off</td>
<td></td>
<td>Switches the Scope Multimeter off. This retains the settings and reduces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>battery drain when switching to a different module. The Play and Record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>icons on the toolbar can be used to switch the meter back on.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td></td>
<td>Returns to the previously viewed screen.</td>
</tr>
<tr>
<td>Setup</td>
<td></td>
<td>See Setup Menu (Preferences) on page 105.</td>
</tr>
</tbody>
</table>
9.7.2 Main Body of the Screen

The main body of the screen varies depending on what display options have been selected. Up to four traces, along with digital readouts of current signal values, signal status and triggering conditions, can be displayed simultaneously on the main body of the screen. Adjustments to the display are made through the scope toolbar as explained above.

Each trace is displayed as voltage over time on a standard oscilloscope screen. Voltage level is recorded on the vertical, or “y-axis” and time is presented on the horizontal, or “x-axis” of the screen. Values are shown for each graduation on the scales.

When using transducers, the pressure being sensed by the transducer is converted into a voltage signal. However, the values are shown as pressure on the display screen rather than voltage.

9.8 Setup Menu (Preferences)

Selecting Setup (upper toolbar) opens a menu including the following options:

- **Traces** - see Trace Controls Menu on page 105
- **Sweep** - see Sweep Scale (X-axis) on page 116
- **Trigger** - see Triggers on page 119
- **View** - see View Controls on page 106
- **Setup** - see Setup Controls on page 110

9.8.1 Trace Controls Menu

Trace controls are used to adjust individual characteristics of how the signal is sampled and displayed for each of the four traces.

To adjust trace controls using the menu:
1. Select Setup (upper toolbar).
 The Scope Multimeter Preferences dialog box opens.
2. Select Traces.
3. Select the trace to be configured from the submenu.
 The traces dialog box displays (Figure 9-11).

![Figure 9-11 Traces dialog box](image)

1—Trace Setup Tabs - Individual tabs for each trace (channel)
2—Probe Selection Icon - Opens probe selection menu
3—Scale (Vertical) Setting Icon - Opens Scale value selection menu
4—Trace Settings - Select or deselect the trace characteristic items as needed:
 - Displayed - display or hide the trace
 - Inverted - see Invert Icon on page 115
 - Coupling AC - see Coupling AC Icon on page 115
 - Peak Detect - see Peak Detect Icon on page 114
 - Filter - see Filter Icon on page 115
5—Auto Find - Sets the scope to sample the signal and internally calculate the best way to display it.
 - A scale and the vertical position for the zero line of the trace that allows the whole waveform to fit on the screen is established when Auto Find is selected.
 - If Auto Find is selected on an armed trigger, it also sets the trigger level halfway between the minimum and maximum value of the signal to provide a stable waveform.
6—Zero Baseline Adjustment - use the slider and arrows to precisely adjust the zero baseline
7—Back - closes the dialog box to return to the Preferences dialog box
8—Exit - closes the dialog box and returns to the scope
9.8.2 Trigger Setup Menu

See Triggers on page 119.

9.8.3 View Controls

Use the view controls to set display attributes.

To adjust view controls:
1. Select Setup from the Scope Multimeter toolbar.
 The Scope Multimeter Preferences dialog box opens.
2. Select View to open a submenu.
3. Select an option from the submenu dialog box. Option details are explained below.

Four options are available on the submenu:
- **Back**—use to return to the Preferences dialog box, or select Exit to close the dialog box and return to the scope.
- **Display**—use to adjust what information displays and how it appears
- **Layout**—use to set how many traces display and how they display on the screen
- **Units**—use to adjust time and voltage interval settings

Display Settings

Selecting Display from the View submenu opens the Display dialog box (Figure 9-12).

The following options are available from the Display dialog box:
- **Show RPM**—adds an engine speed field at the top of the screen (Figure 9-13).

![Sample Show RPM selected](image)

- **Show Digital KV**—available only in ignition scope, displays digital kilovolt readings, rather than waveforms, on the screen (Figure 9-14).

![Sample Show Digital KV selected](image)
• **Show Grid**—switches grid lines on the screen off and on (*Figure 9-15*).

![Figure 9-15 Sample grid selected](image)

• **Invert Colors**—switches the screen background to white.

Layout Settings

The selected radio knob on the Layout dialog box shows which setting is active. Use your finger or the stylus to switch between settings:

• **1 window**—shows all traces on the same screen (*Figure 9-15*).

• **2 windows**—shows two separate traces in two ways: horizontal, one below another (*Figure 9-16*) or vertical, side-by-side (*Figure 9-17*).

• **3 windows**—shows three traces, one below another, on the same screen (*Figure 9-18*).

• **4 windows**—shows four traces, one below another, on the same screen.

![Figure 9-16 Sample 2 Windows horizontal display](image)

![Figure 9-17 Sample 2 Windows vertical display](image)

![Figure 9-18 Sample 3 Windows display](image)
Unit Setup

The Unit Setup dialog box allows you to switch between Full Scale or Per Division settings for the trace setup and the display settings. Selecting Full Scale configures the units to the full viewing area of the screen, while Per Division adjusts the units to a single division (one tenth) of the screen.

The selected radio knob on the Units dialog box shows which setting is active. Use your finger or the stylus to switch between settings (*Figure 9-19*).

NOTE

This setting ONLY changes the vertical scale, the sweep (horizontal) scale is NOT changed.

Trace Full Scale - changes the dropdown vertical scale menu selections to full scale mode, which represents the selected unit of measurement over the entire (full) scale.

Example (Figure 9-20): Selecting 10V, changes the vertical scale to a 10V volt scale. The vertical scale is “always” divided by 10, therefore each division is incremented by 1V.

*Figure 9-19 Sample View Units dialog box

Figure 9-20
Trace Per Division - changes the dropdown vertical scale menu selections to ##/div mode, which in turn changes the vertical scale to represent ## by division.

- represents (variable) what is being measured (voltage, amperage, pressure etc.)

Example (Figure 9-21): Selecting 1.0V/div, displays a vertical scale divided by 10. The vertical scale is “always” divided by 10, therefore each division is incremented by 1.0V, thus a 10V scale.

Display Per Division - displays the graduation value of the major scale divisions

Example (Figure 9-23): If the vertical scale is set to 1V, the value displayed is 0.1V.

Display Settings

The Display setting allows you to change the displayed value in the Vertical Scale icon to your preference.

NOTE

This setting ONLY changes the value displayed in the Vertical Scale icon.

Display Full Scale - displays the value of the entire (full) scale

Example (Figure 9-22): If the vertical scale is set to 1V, the value displayed is 1V.
9.8.4 Setup Controls

Basic tool settings are adjusted here.

1. **To adjust setup controls:**
 1. Select **Setup** from the Scope Multimeter toolbar.
 The Scope Multimeter Preferences dialog box opens.
 2. Select **Setup** from the dialog box.
 A submenu of options displays:
 - **Back**—use to return to the Preferences dialog box.
 - **Units**—set how measurement values display, US standard or metric.
 - **Snapshot**—adjust the percentage of data captured after a snapshot is initiated.
 - **Ignition**—configure the ignition scope for the test vehicle.

Selecting from the submenu opens a dialog box for that item. Dialog box options for each item are discussed in the following sections.

3. Make dialog box selections as needed.
4. Select **Exit** to close the dialog box and return to the scope.

Units

Selecting Units opens the Setup dialog box. The units of measurement can be changed between US customary or metric. The selected radio knobs on the Setup dialog box show which settings are active (*Figure 9-24*).

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>inHg</td>
<td>inches of mercury</td>
</tr>
<tr>
<td>kg/cm²</td>
<td>kilograms per centimeter squared</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of mercury</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
</tbody>
</table>

Snapshot

The Snapshot tab opens a menu (*Figure 9-25*) that allows you to select how much data is captured after a snapshot is initiated. Make a (%) selection, then select **Back** or **Exit** to close the dialog box.

See *Taking a Data Snapshot* on page 128 for information on using the snapshot feature.

Ignition

See *Ignition Scope* on page 129.
9.9 Control Panel and Settings

This section provides a general overview of all the trace setting control features used across all Scope Multimeter functions.

The control panel is common to all three Scope Multimeter functions, and contains the trace (or "channel") controls that are used to monitor and adjust the signal being measured.

The trace control icons within the Control Panel open the same control setup menus as are available from the Trace Setup menu.

Adjustments are made by selecting the item to be changed on the touch screen. A dash (–) indicates a function that is not selected, and an icon indicates an active function.

The information in the following sections is intended as a guide and general overview of the controls and functions used within the Scope Multimeter. Not all the settings or controls described throughout this section are applicable with all functions, some may be "grayed out" or not active (applicable), depending on the function or test.

9.9.1 Display Modes

The control panel has three display modes, and can be changed by repeatedly selecting the Expand/Collapse icon from the lower toolbar, or the Data icon on the upper toolbar.

- **Normal** — control setting icons are displayed (e.g. Profile, Channel, Probe, Filter, Scale, etc) (Figure 9-26)

- **Expanded** — a limited set of control settings are displayed and the Min. Max. Live and Cursors panels are displayed (Figure 9-27)
• **Control Panel Off**— the control panel is not displayed, only the meter screen is shown (Figure 9-28)

9.9.2 Control Panel (Trace Controls Quick Reference)

Trace (channel) settings and controls can be accessed in the Control Panel and the Trace Setup menu. Graphic and value icons are used in the control panel to access the settings. Applicable settings are displayed depending on the test.

Various control icons are shown in the following images, select a callout description (blue text) to link to that topic.

![Figure 9-29](image-url)

- 1. Profile Icon
- 2. Channel Icon
- 3. Probe Icon
- 4. Peak Detect Icon
- 5. Filter Icon
- 6. Invert Icon
- 7. Coupling AC Icon
- 8. Slope (Trigger) Icon
- 9. Taking a Data Snapshot
- 10. Expand/Collapse Icon - see Display Modes
- 11. Trigger Setup Menu Icon - see Trigger Setup Menu
9.9.3 Profile Icon

The Profile icons (variable) allow you to hide or display channels onscreen.

Selecting an icon turns a channel on and off.

<table>
<thead>
<tr>
<th>Profile Icons (Typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On (Channel displayed)</td>
</tr>
</tbody>
</table>

9.9.4 Channel Icon

The Channel icons (variable) identify the channel numbers (1 to 4). Selecting an icon opens the trace setup menu. See *Trace Controls Menu on page 105.*

9.9.5 Probe Icon

The Probe icons (variable) allows you to change the type of probe for the test you are performing. Selecting an icon opens the probe setup menu. Changing the probe, also changes the vertical scale to the applicable type of measurement.

For probe calibration information, see *Test Lead / Probe Calibration on page 103.*
9.9.6 Peak Detect Icon

Peak Detect allows you to maximize the signal sampling rate in order to capture fast events, such as spikes, glitches and other anomalies, that may normally be undetected.

<table>
<thead>
<tr>
<th>Probe “test” Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Option</td>
</tr>
<tr>
<td>Test Lead - Volts DC</td>
</tr>
<tr>
<td>Vacuum 100</td>
</tr>
<tr>
<td>Pressure 100</td>
</tr>
<tr>
<td>Pressure 500</td>
</tr>
<tr>
<td>Pressure 5000</td>
</tr>
<tr>
<td>Low Amps 20</td>
</tr>
<tr>
<td>Low Amps 40</td>
</tr>
<tr>
<td>Low Amps 60</td>
</tr>
</tbody>
</table>

NOTES

— Turning peak detect “off” is suitable for basic measurements, and viewing waveforms (e.g. oxygen (O2) or Cam sensor) when capturing fast events is not necessary.

— The longer the time sweep, the greater the chance a glitch could be missed because it occurred in between the sample points saved to the data buffer memory. To increase the chance of capturing a glitch with peak detect “off”, a shorter time sweep should be selected.

— Turning peak detect “off” avoids the need for an external filter to decrease the display of unwanted noise, which can make diagnosis more difficult.

Example: With a time sweep of 10 seconds on a screen 100 points wide, the effective sample rate would be 10 times a second. Decreasing the time sweep to 1 second, increases the effective sample rate to 100 times a second. At this time setting, a fast occurring event is more likely to be captured due to the increased rate. This is the standard mode of operation for many scopes.

Peak Detect On

When peak detect is “on”, all sample points are evaluated. The points stored to the data buffer memory are intelligently selected to capture fast events that might be missed at slower effective sample rates. Peak Detect captures fast events, spikes and glitches for signals going in both positive and negative directions.

NOTES

— Turn peak detect "on" when capturing fast events (e.g. ignition firing voltage, glitches, and intermittent events).

— Turning peak detect “on” may capture unwanted noise, therefore, using peak detect may not be suitable for some tests (e.g. oxygen (O2) sensor), as the waveform may be more difficult to evaluate due to the additional noise that may be displayed.

— Peak Detect decreases the possibility of waveform aliasing.
9.9.7 Filter Icon

Depending on which function it is used with, Filter can minimize or smooth out signal spikes and fast variations, when the signal is disrupted by noise or other interference.

<table>
<thead>
<tr>
<th>Filter Icons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On (Interference is suppressed)</td>
<td>Off (Interference is not suppressed)</td>
</tr>
</tbody>
</table>

Filter - Lab Scope

Using the filter with the lab scope, smooths out fast spikes, which helps to provide a good balance between noise suppression and signal integrity.

Using the filter is useful when working with scales of 5 volts and below, as the lower the voltage scale, the more likely noise can occur.

Example: Using the filter is helpful when testing components such as, an O2 sensor (1 or 2 volt scale), or when performing a throttle position (TP) sensor sweep test (5 volt scale).

In addition, the filter is also helpful for low amp probe tests, as a low voltage scale is used to measure the output of the probe (due to the conversion factors of the probe).

Example: For a probe with a conversion factor of 100 mV/A connected to a 2 amp load, the scope uses a 200 mV scale to measure the output of the probe. The scope converts the measured output to 2 amps for display on the screen.

Filter - GMM

Using the filter with the GMM minimizes noise by ignoring or smoothing out fast signal spikes.

- For a direct measurement test, such as volts, amps, or pressure, the filter minimizes the display of very fast spikes by averaging the sampled data when filter is active.
- For a calculated measurement test, such as frequency, pulse width, dwell, or duty cycle, extremely fast spikes (20 µS and faster) from sources like the ignition system are ignored when filter is active.

9.9.8 Invert Icon

Invert is used to switch signal polarity, so the trace appears upside down (inverted) on the screen. This is typically used when measuring amperage using the low amp probe, or high-voltage signals like secondary ignition.

<table>
<thead>
<tr>
<th>Invert Icons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On (Polarity is inverted)</td>
<td>Off (Polarity is not inverted)</td>
</tr>
</tbody>
</table>

Example: A signal that normally rises from 0 to +5 volts, if inverted would show falling from 0 to –5 volts.

9.9.9 Coupling AC Icon

Coupling AC subtracts the average value of a signal so that small variations can be seen in the waveform. This is accomplished by blocking the direct current (DC) portions of a signal in order to amplify (show) the alternating current (AC) portions of the signal, without driving the trace off of the screen.

Using coupling AC can be helpful when testing and diagnosing alternator ripple or fuel pump amperage, by allowing you to see any abnormal small variations or events.

<table>
<thead>
<tr>
<th>Coupling AC Icons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On (DC signal portion blocked)</td>
<td>Off (DC signal portion not blocked)</td>
</tr>
</tbody>
</table>
9.9.10 Slope (Trigger) Icon

See Trigger Operation on page 121 for additional information.

9.9.11 Scale (Vertical / Y-axis)

The vertical scale (Y-axis) represents what is being measured (voltage, amperage, pressure etc.), and the unit of measurement it is being measured in. The vertical scale is “always” divided into 10 major divisions; how these divisions are defined, sets the scale of measurement.

NOTE

Vertical scales (any channel) can be set independently.

To adjust the vertical scale unit of measurement, select the Vertical Scale icon to open the vertical scale menu. The value displayed in the vertical scale icon indicates the active value. Adjustment can also be made using the Trace Controls menu, see Trace Controls Menu on page 105.

Example: Selecting 10V, changes the vertical scale to a 10V volt scale. The scale is “always” divided by 10, therefore each division is incremented by 1V.

![Figure 9-32](image1)

9.9.12 Sweep Scale (X-axis)

The Sweep Scale or horizontal scale (X-axis) represents time, and the unit of measurement it is being measured in. The horizontal scale is “always” divided into 10 major divisions. How these divisions are defined sets the scale of measurement. The value displayed in the sweep Scale icon indicates the active sweep setting.

NOTE

The sweep setting applies to all channels and cannot be set independently per channel.

To adjust the sweep scale, select the Sweep Scale icon from the Control Panel to open the sweep scale menu. The value displayed in the Sweep Scale icon (white color) indicates the active value.

Adjustment can also be made using the Trace Controls menu, see Trace Controls Menu on page 105.

Example: Selecting 50 psi displays a 50 psi scale that is divided by 10, therefore each division is incremented by 5 psi.

![Figure 9-33](image2)
Example: Selecting 50ms, changes the sweep scale to a 50ms scale. The scale is "always" divided by 10, therefore each division is incremented by 5ms.

9.9.13 Min, Live and Max Display Panel

When using Expanded mode the Min, Live and Max display panel (Figure 9-27) shows each channel’s active signal minimum and maximum recorded measurements and live measurement.

- **Min** - lowest measurement recorded for the signal since the test was activated, or from the last time Refresh was selected
- **Max** - highest measurement recorded for the signal since the test was activated, or from the last time Refresh was selected
- **Live** - represents the “live” running average measurement of the signal being measured

9.9.14 Zero Baseline Adjustment

To adjust the vertical position of the zero baseline (0 value) of a trace, either touch and drag the baseline marker up/down on the screen (Figure 9-36), or open the trace setup menu to make precise adjustments, see Trace Controls Menu on page 105.
9.9.15 Threshold Auto/Manual (GMM Only)

NOTE

The Threshold function is only available in the Graphing Meter function for specific tests. These functions may also be referred to as Auto Threshold Select (ATS) or Manual Threshold (MT).

The Threshold function can be used, to display and obtain a more accurate measurement when measuring signals (e.g. Frequency, Duty Cycle, MC Dwell and Pulse Width) that may be difficult to display or have noise or other undesirable variations in the signal.

When **Auto Threshold** is selected, the Threshold function automatically sets a trigger and determines a threshold level in the middle of the signal range (calculated from the Min and Max measurements) to be used as a reference point to calculate the measurement. The falling edge (slope) of the signal is used in determining the threshold level. Once selected, the Threshold function remains active until the test is exited.

Selecting **Manual Threshold**, allows you to manually set the value and slope.

The following examples are provided, showing some common setup issues you may experience when using this function:

If after enabling the Threshold function the signal is displayed as a flat line at zero (0) (**Figure 9-38**), reduce the vertical scale setting, as it may be set too high.

If the scale is changed to 50Hz, it is easier to see the signal at 7Hz (**Figure 9-39**).
In some instances a signal with unequal spacing may display as a band or ragged signal, depending on the sweep setup or the measurement type being displayed. As example, a Cam sensor signal Hz graph (shown in Figure 9-40) may look like this with a lot of variation.

![Figure 9-40 Cam signal (GMM frequency)](image)

In this situation, you can use the lab scope to verify the signal integrity and spacing. Displayed in Lab scope (Figure 9-41), it can be seen there is actually variation which the Hz graph is not displaying.

![Figure 9-41 Cam signal (Lab Scope)](image)

9.10 Triggers

Triggers are only available in the lab scope function.

A trigger can be used to stabilize a changing or erratic signal (a signal that may flicker or drift as it refreshes), so that it is easier to view or diagnose. This stabilization effect is accomplished by basically displaying the same part of the trace repeatedly from the same starting point, thus the flicker or drift is minimized.

A trigger is basically a “specific point” on the display, at which a trace will start to display (start the sweep) if it crosses that point.

The trigger feature allows you to set the conditions of that “specific point” also called a “trigger point”. When the trigger conditions are set, and a trace “meets” those conditions (crosses the trigger point), the trace will start.

Trigger conditions:

- **Vertical scale position** (amplitude)
- **Sweep position** - the horizontal scale position, or position in time
- **Slope direction** - the direction the trace must be moving (up/rising or positive) or (down/falling or negative) when crossing the trigger point.

NOTES

Triggers can be set on any channel, however only one trigger can be activated (used) at a time.

If a trigger is set outside the range of the scales, a yellow marker (e.g. arrow with plus symbol) will be displayed indicating the trigger is out of range and a confirmation screen will display.

When a trigger is set on a channel, and more than one channel is active (displayed), trigger conditions must be met for that channel in order to display all the other channels.

The trigger point is indicated by a plus marker (+) on the scope grid. The trigger marker sign can be dragged across the grid with the stylus to roughly position it. The trigger setup menu allows you to precisely position the trigger. See Trigger Operation on page 121.
9.10.1 Trigger Setup Menu

To access the trigger setup menu:

- Select the Trigger Setup Menu icon from the control panel, or
- from the upper toolbar select Setup > Trigger

1— Source:
- Trace 1 to 4—sets the trigger for the applicable channel.
- Cylinder—sets triggering to the firing of a cylinder detected by the optional RPM Pickup or Secondary Ignition Adapter.
- None—switches triggering off.

2— Mode—sets the method of triggering:
- Auto—see Trigger Auto/Manual on page 120
- Manual—see Trigger Auto/Manual on page 120

3— Slope—sets triggering to the rising (top icon) or falling (lower icon) slope of the signal waveform.

4— Vertical—sets the vertical trigger position

5— Horizontal—sets the trigger timing position (left and right on the grid)

6— Back—closes Trigger Setup Menu

Figure 9-42 Trigger setup menus

Trigger Auto/Manual

i NOTE

The Auto and Manual Trigger modes allow you to set the criteria used to display signals on the screen. To change the trigger mode, the trigger must be set on one of the channels.

In both Auto and Manual Trigger mode the screen is updated when the signal crosses the trigger point in the selected direction (rising or falling), however:

- **Auto Trigger**—(default mode)
 - when Auto Trigger is on, even if the signal does not cross the trigger point, the screen automatically updates after a short period (allowing you to see the waveform). When this occurs, the message “Waiting for the trigger” is displayed on the screen. The trigger point can then be set to optimize viewing.

- **Manual Trigger**
 - when Manual Trigger is on, if the signal does not cross the trigger point the screen will not update. This allows you to capture intermittent events onscreen, as the screen only updates when the signal meets your trigger selection.

i NOTE

When using Manual Trigger, it may be easier to initially set the trigger point using Auto Trigger, as the screen will update regardless if the signal crosses the trigger point. Once the trigger point is set, then switch to Manual Trigger mode.
9.10.2 Trigger Operation

Trigger Slope Icons

Trigger slope icons are displayed in the control panel.

<table>
<thead>
<tr>
<th>Trigger Slope Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rising (up or positive) - Indicates trigger is turned on to start the trace on the rising edge (as signal begins to rise)</td>
</tr>
<tr>
<td></td>
<td>Falling (down or negative) - Indicates trigger is turned on to start the trace on the falling edge (as signal begins to fall)</td>
</tr>
<tr>
<td></td>
<td>Off - Indicates trigger is turned off. (Select to turn trigger on)</td>
</tr>
</tbody>
</table>

Turning Triggers on/off

To turn a trigger on/off:

A trigger can be turned on by:
- selecting the trigger (off) icon from the control panel.
- opening the Trigger Setup Menu see *Trigger Setup Menu on page 106*, and selecting the desired Trigger tab from the menu.

A trigger can be turned off by:
- opening the Trigger Setup Menu see *Trigger Setup Menu on page 106*, and selecting the desired Trigger tab from the menu. then selecting None under the Source options.

Setting Trigger Position

To set trigger position:

The trigger marker is indicated by a plus graphic (+) on the display (*Figure 9-43*). The trigger marker represents the trigger point and is displayed on the screen when the trigger is turned on.

- To roughly position the trigger marker, select and drag it into position using the touch screen.
- To position the trigger marker with accuracy, open the trigger setup menu. See *Trigger Setup Menu on page 120*, and use the vertical and horizontal slider controls to adjust the position.

Figure 9-43
9.10.3 Cursors

Cursors are only available in Lab Scope and Graphing Multimeter functions.

Two vertical cursors are provided that allow you to make precise signal measurements. This is most useful when determining signal characteristics such as amplitude at specific points, and cycle time (duration) or frequency.

Using cursors can also be helpful when performing diagnostic tests, such as:

- O2 sensor rich/lean switch time
- Fuel injector pulse width frequency
- Secondary ignition spark duration
- Crankshaft position sensor frequency

Measurements can quickly be taken between the two cursors, when measuring a single cycle or across multiple cycles by positioning the cursors at the start and end of the cycle or multiple cycles. Cursor measurements are displayed in the Control Panel when using the cursors, providing you digital values of the cursor measurements.

To turn the cursors on/off:

1. Select Cursors (upper toolbar to open the Cursors dialog box (Figure 9-45).
2. To turn the Cursors on/off, select Show or Hide icon as applicable.

To position the cursors:

The cursors can be positioned anywhere within the range of the sweep scale by either dragging them horizontally on the graph, or using the cursors control menu.

- Control Menu - select Cursors from the upper toolbar, then drag the applicable slider or select the arrows to position the cursors. Each tap of the stylus moves the cursor incrementally in the direction of the arrows.
- Onscreen - select either cursor marker (base) and drag it to the desired position.

Cursor Measurements Panel

When the cursors are turned on, the cursor measurements panel can display the following signal and cursor measurements:

- Signal amplitude at two points
- Signal amplitude difference (delta) between two points
- Cursor position in time at two points
- Difference (delta) in time between the cursors
• Frequency - frequency of the signal for the time period between cursor 1 and 2

The cursor measurements panel contains values for each channel in two displays (Figure 9-44).

The time and delta display is gray in color and includes (shown when collecting data):
- **Cursor 1** - cursor position in time at cursor 1
- **Cursor 2** - cursor position in time at cursor 2
- **Delta** - difference in time between cursor 1 and 2
- **Frequency** - the frequency value (Hz) of the signal for the time period between cursor 1 and 2

The amplitude and delta display is shown in the channel specific color and includes (shown when data is paused):
- **Cursor 1** - signal amplitude at cursor 1 position
- **Cursor 2** - signal amplitude at cursor 2 position
- **Delta** - signal amplitude difference between cursor 1 and 2

NOTES

Frequency is the number of times a signal repeats itself per second and is measured in hertz (Hz).

The frequency value displayed, is the inverse of the Delta value, and can also be calculated as 1 divided by Delta. The frequency value (Hz) shown is automatically calculated by the scope.

Example 1: Delta = 20.46ms, to get frequency divide 1 by .02046 (1/.02046 = 48.87Hz)

Example 2: Delta = 2.53ms, to get frequency divide 1 by .00253 (1/.00253 = 395.27Hz)

Use applicable decimal point placement during division as the Delta value changes.

9.11 Capturing Data

The primary purpose and advantage of the Lab Scope and Graphing Multimeter, is their ability to capture, store and playback data (test signals). Having this ability can be invaluable when diagnosing intermittent issues, by providing you the ability to navigate through the data in detail to find events of interest, such as glitches and signal losses. The following sections describe the basics of the data buffer and the two basic modes of operation, Capture Mode and Review Mode.

9.11.1 About the Data Buffer

To gain a better understanding of the capabilities of the scope and the basics of capturing and reviewing data, understanding what the data buffer is and how it works is important.

The Lab Scope and Graphing Multimeter have the capability to capture, store and playback data (test signals) utilizing internal buffer storage memory. When a test function is selected (e.g. Lab Scope > DC Volts), the data is automatically stored in buffer memory, until the Pause icon is selected.

The amount of data you can capture is limited to a predetermined “total buffer memory” size. When the buffer memory reaches its full capacity, the data buffer will continue to store new data, however earlier stored data will be removed to allow room for the new data being stored. The most recent data is always available for review when the scope is paused, and can be reviewed using the toolbar controls.

As a visual aid, a graphic Data Buffer Slider (Figure 9-46 (2)) is located at the bottom of screen and indicates the position of the current displayed frame of data in relation to the entire buffer memory capacity. **Note**: In Review Mode, the slider can be used to quickly move through paused data.

In addition, a Data Buffer Position Counter (Figure 9-46 (1)) displays the numerical position of the Data Buffer Slider within buffer memory.

1. Data Buffer Position Counter (XX (minutes): XX (seconds): XXX (thousandth of a second)
2. Data Buffer Indicator Slider

![Figure 9-46](image-url)
9.11.2 Capturing Data (Capture Mode)

Whenever you open Lab Scope or the Graphing Multimeter, the device is in Capture Mode. In Capture Mode, data is continuously being captured and stored in buffer memory at the same time it is being displayed onscreen.

NOTE

Data is continuously stored in buffer memory with or without an active input test signal or trigger.

To help you understand how to work with captured data, an important concept to remember is that data is captured over a period of time. Therefore there is a direct relationship between the length of time the data is captured in, and the resultant level of detail you will have when reviewing it.

As every testing situation is different, the following is provided only as a guide when capturing data to provide the best flexibility when reviewing the data to find events.

In most situations if you start by using a sweep setting that is best suited for viewing the waveform "live", or at a setting that provides the best detail to the naked eye, this will allow you to either see the event you are looking for "live", or allow you to use the zoom feature (in Review Mode) to zoom out (2, 8, 32X etc.) and then search through the data buffer for events of interest.

It is important to remember that whatever sweep setting you use during data capture is what the 1X zoom level will be when you switch to Review Mode. Therefore, if you capture data using a sweep setting where the pattern displayed is tightly compacted (can’t visually see detail), then when you try to use zoom you will not be able to see any detail, as you will only be able to zoom out from the setting where you originally captured the data (displaying an even greater level of compacted data).

In other situations you may need to start at a faster sweep (shorter time) to capture more detail "live", then zoom out (in Review Mode) to get a wider view and then zoom in at the points of interest where you need more detail. Using this strategy you will capture less total time, but be able to see more detail.

For some situations, if the sweep setting you are using is not fast enough to capture the event your looking for, turning Peak Detect on will increase the sample rate and may allow you to see the event.

Using peak detect can also help in avoiding aliasing if the sweep time is too great for the waveform being captured. Using peak detect is not appropriate for every instance, but when using longer sweep settings, it can help increase the capture time by allowing you to capture more than you could without it and still capture dropouts and points of interest. See Peak Detect Icon on page 114 for more information.

For additional information on setup and capturing data (input signals) see General Reference (Testing Strategies) on page 142.

NOTE

Glitches may cause drivability problems and may not turn on the MIL or set DTCs. As a general guide when looking for a suspected signal glitch, always try to verify the problem by duplicating the conditions while capturing data. Utilize the GMM to monitor the signal over longer time periods and review the histogram for possible faults.

The following control icons are active in the lower tool bar in Capture Mode.

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot</td>
<td>![Icon]</td>
<td>Takes a “snapshot” of the data being captured, see Taking a Data Snapshot on page 128.</td>
</tr>
<tr>
<td>Pause</td>
<td>![Icon]</td>
<td>Pauses data capture</td>
</tr>
<tr>
<td>Expand/ Collaps</td>
<td>![Icon]</td>
<td>Expands and collapses the Trace Detail area on the screen</td>
</tr>
</tbody>
</table>

For an alternate method of capturing data, see Taking a Data Snapshot on page 128.

9.11.3 Pausing Data

Data continuously stores in buffer memory until the Pause icon is selected. Selecting the Pause icon, allows you to temporarily pause the data (input test signal) to review it in detail. See Reviewing Data and Using Zoom (Review Mode) on page 125 for more information.

To resume data capture, select the Start icon.
9.11.4 Reviewing Data and Using Zoom (Review Mode)

Review Mode allows you to search through the captured data in detail to find events of interest, such as glitches and signal losses.

Press the Pause icon (Figure 9-47) to open Review Mode.

![Figure 9-47](image)

To search through the captured data, select the desired control icon to move forward or backward through the data. The following control icons are active in the lower tool bar in Review Mode:

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Back</td>
<td></td>
<td>Moves to the previous point in the data</td>
</tr>
<tr>
<td>Back 1 Frame</td>
<td></td>
<td>Moves to the previous frame in the data</td>
</tr>
</tbody>
</table>

NOTE

You can also use the data buffer indicator slider to quickly scroll through the captured data in buffer memory.

As there is a direct relationship between the length of time the data is captured in, and the resultant level of detail you will have when reviewing it, review the information in Capturing Data (Capture Mode) on page 124 for tips on capturing and reviewing data.
Using Zoom

The zoom function is only available in Review Mode, and can be an invaluable tool when searching for events of interest within captured data. Zoom effectively gives you the ability to change the magnification level of the signal sweep during data review.

As zoom, allows you to change the magnification level of the signal sweep, this allows you to compress or expand multiple screens of data to quickly find glitches, or signal losses.

NOTE

Control icon function is normal when using zoom, with the following exception:

Forward 1 Frame / Back 1 Frame control icons - (press once) moves multiple frames relative to set magnification level (e.g. 2X setting, moves 2 frames; 16X setting, moves 16 frames).

When the Zoom icon is selected (Figure 9-48) the display defaults to the "Max" magnification level and a dropdown scroll menu will display.

The dropdown menu allows you to select the display magnification level from a range of 1X to 256X. The "Max" (maximum) option displays all data captured on one screen (Figure 9-49).

NOTE

It is important to remember that whatever sweep setting you used during data capture is what the 1X zoom level will show.

The active zoom options (1X to 256X) that are selectable are dependent on the amount of data stored in the buffer. Less data captured = less zoom options. More data captured = more zoom options.

When zoom levels of 2X and higher are selected, a Zoom cursor (vertical dashed line) (Figure 9-49) displays onscreen. The cursor is used to quickly mark and navigate to points of interest or glitch in a captured waveform.

NOTE

To quickly identify a glitch in a pattern, it may be easier to initially view the waveform at a higher magnification level (e.g. 256X or "Max") to display the entire captured waveform, find the area of interest and then lower the zoom level to 8X or 2X to review that area in detail. See Zoom Example on page 127.

The Zoom cursor can be used to mark the approximate position of a glitch and can be manually dragged onscreen to the desired position. The new cursor position will be centered on the screen when a lower magnification level is selected. Figure 9-50 shows an example at 64X with the Zoom cursor positioned in the area of a signal drop glitch.
Figure 9-50 shows an example at 8X of the same waveform shown in Figure 9-50. In Figure 9-51 at 8X, the glitch is easily seen as compared to higher magnification levels.

Zoom Example

While monitoring a MAF (Mass Air Flow Sensor) signal, the waveform displays normally. As the signal is being monitored, an erratic “condition” suddenly develops, then goes away, but may have not been observed on the screen. Stopping the data capture (when such an event occurs) allows you to analyze the waveform using a higher zoom level (wider view) to look for a glitch in the signal. The following three illustrations show a generic square waveform to illustrate this method.

1 - Monitoring / Capturing waveform as it displays normally (Figure 9-52). You may not see a glitch, while monitoring at this setting.

2 - Pause data capture and then zoom out (this example is at 32X) to see more data and to possibly find a glitch (Figure 9-53). In this example the cursor has been placed on the right side of a glitch. The waveform is too compressed to see any detail, however the glitch stands out as a thin dark area in the waveform.

Figure 9-51
3 - Zoom back in (this example is at 2X) to view more detail (*Figure 9-54*) in the area where the cursor was placed by the glitch.

![Figure 9-54](image1)

9.12 Taking a Data Snapshot

An automated method of capturing data is to take a Snapshot. Selecting the Snapshot icon allows you to quickly capture and/or save a “snapshot” of data.

When selected, a screen message displays “Collecting snapshot data. Please Wait.... Select OK if enough data has been collected.”

Select **OK** when you have collected the amount of data needed, then another screen message displays “Snapshot data has been collected.” Select **OK** to save now or **Cancel** to view and save later.

Selecting **Cancel** allows you to review the captured data using the control icons on the toolbar. To save the data, select **File** (upper toolbar) and make the required entries to save the data file.

Snapshot (% after trigger options)

To set the amount of data captured after a snapshot is initiated:

1. Select **Setup** (upper toolbar)
2. Select **Setup** from the menu, then select **Snapshot**.
 The Snapshot tab opens a menu (*Figure 9-25*).
3. Make a (%) selection, then select **Back** or **Exit** to close the dialog box.

![Figure 9-25](image2)

9.13 Saving Data

Selecting the **File** icon from the toolbar provides options for saving data files or configurations.

- **Save Configuration**—saves the current setup values as a Preset. To open a saved Preset, select Preset from the main menu, see *Presets on page 140*.
- **Save Single Frame**—saves the data currently on the screen only.
- **Save All Frames**—saves the current screen plus all the data stored in the buffer.

When either selection (Save Single Frame or Save All Frames) is made the data stored in buffer memory is written to a file. Saving data files is useful when trying to isolate an intermittent problem or to verify a repair during a road test. The saved file can be played back (similar to a movie clip) by selecting **Data Manager > Scope Multimeter Data Folder**. See *Viewing Saved Files on page 163* for additional information.

To save a file or configuration:

1. Select **File** from the toolbar.
2. Select a save option from the dialog box.
The Windows Save As dialog box opens.

3. Use the keyboard to name the file to be saved, then either select Save. A configuration description dialog box will open.

NOTE
The description entered here is what displays in the information panel of the Data Manager.

4. Use the keyboard to enter a description of the file to be saved.
5. Select OK to close the file setup dialog box.

Once a configuration is saved it becomes available as a preset, see Presets on page 140. Files are saved to the Scope Multimeter Data Folder and can be retrieved through the Data Manager.

9.14 Ignition Scope

9.14.1 Ignition Scope Setup

To display secondary ignition waveforms the Lab Scope must be properly configured to the type of ignition system you are testing, and for the type of display pattern you wish to view. For general reference information on ignition waveforms, see Ignition Waveform Reference on page 138.

1. To start the setup process, select Scope Multimeter from the Home screen.
2. Select Ignition Scope.
3. Choose one of the following test modes:
 - Parade - displays the secondary waveform pattern for each cylinder in the firing order from left to right across the screen.
 - Cylinder - displays the secondary waveform pattern for the selected cylinder.
 - Raster - displays the secondary waveform pattern for each cylinder in the firing order, from the bottom to the top across the screen.
 - Superimposed - displays the secondary waveform pattern for each cylinder in the firing order stacked on top of each other.
 - Single Cylinder Ignition - configures the unit to connect to an individual cylinder using a fixed time sweep when a lead is not available to connect to all cylinders.

4. Select Setup from the upper toolbar.

The Ignition Scope Preferences menu opens. From this menu and the sub-menus within it, you can configure all the settings needed to display secondary ignition patterns.
5. From the Preferences menu select Setup (Figure 9-58).

6. From the sub-menu select Ignition (Figure 9-59).

The main ignition setup menu opens.

7. Choose an ignition system Type, there are four types of ignition system choices available.

The basic setup of each Type, are described in the following sections.

- **Standard** on page 130
- **Waste Spark** on page 131
- **Direct Ignition** on page 131
- **Other** on page 132

NOTE

It is important that you choose the ignition system type first, as other settings are dependent on this selection.

Standard

Standard is used for ignition systems with a distributor (Figure 9-60).

1. Enter the **Number of Cylinders**.
2. Select the **Firing Order**.
3. Select **Plug** for Number 1 Trigger setting.

Setup Notes:

- Selecting Coil (for Number 1 Trigger setting) should only be used to supply an RPM signal when the #1 trigger lead is connected to the coil wire.
- Connect the #1 trigger lead to cylinder #1.
4. Refer to the following sections for additional ignition scope settings:
 - **Traces (Ignition Scope Trace Setup)** on page 132
 - **Sweep (Ignition Scope Sweep Setup)** on page 133
 - **Trigger (Ignition Scope)** on page 134

For common settings within the Preferences menu, see **Setup Menu (Preferences)** on page 105.
Waste Spark

Waste Spark is used for coil pack systems that fire two plugs simultaneously.

1. Enter the **Number of Cylinders**.
2. Select the **Firing Order**.
3. Check the engine firing polarity and change the Polarity setting to match it by using the + and - buttons.

Setup Notes:
- Connect the #1 trigger lead to cylinder #1.
- To test a single coil, set the number of cylinders to 2.
- When testing Wasted Spark systems, power firings will display on Channel One and waste firings on Channel Two.
4. Refer to the following sections for additional ignition scope settings:
 - **Traces (Ignition Scope Trace Setup)** on page 132
 - **Sweep (Ignition Scope Sweep Setup)** on page 133
 - **Trigger (Ignition Scope)** on page 134

For common settings within the Preferences menu, see **Setup Menu (Preferences)** on page 105.

Direct Ignition

Direct is used for coil-on-plug systems.

1. Enter the **Number of Cylinders**.
2. Select the **Firing Order**.

Setup Notes:
- Plug is preset as the setting for Number 1 Trigger setting.
- Connect the #1 trigger lead to cylinder #1. (For vehicles without a plug wire, this connection may not be possible. As an alternate method that may work, try clamping around the #1 cylinder primary coil driver wire or all primary wires if they are tightly bundled.)
3. Refer to the following sections for additional ignition scope settings:
 - **Traces (Ignition Scope Trace Setup)** on page 132
 - **Sweep (Ignition Scope Sweep Setup)** on page 133
 - **Trigger (Ignition Scope)** on page 134

For common settings within the Preferences menu, see **Setup Menu (Preferences)** on page 105.
Other

Other is used for ignition systems that do not fit any of the other categories (e.g. rotary engine).

NOTE

This selection should not be used to view waveforms. It is only used to supply an RPM signal.

Select the applicable RPM factor.

Traces (Ignition Scope Trace Setup)

Trace Setup (Figure 9-64) allows you to:
- Change the KV scale
- Display or hide the trace
- Invert the trace
- Turn on/off Coupling AC (only selectable if a “time” based sweep is used)
- Move the Zero Base line using the slider (right side)

Setup Notes:
- Trace 2 is only active when in Wasted Spark Mode
- Raster Spacing (Figure 9-65) adjustment is only available in Raster mode.
Sweep (Ignition Scope Sweep Setup)

Sweep Setup (Figure 9-66) allows you to change the ignition test mode, or change to a time based sweep setting (e.g. 2 ms, 50 ms, 5s).

Two variations of each ignition test mode (5 and 10ms) are offered (e.g. Raster 5 ms and Raster 10 ms).
Trigger (Ignition Scope)

Trigger Setup (*Figure 9-67*) allows you to:

- Change the triggered cylinder (Single Cylinder Mode only)
- Adjust the detection sensitivity to cylinder firings

About Detection Sensitivity

The sensitivity adjustment is primarily used to fine tune the ignition signal into a viewable pattern. The “Vertical” slider is used to raise or lower the cylinder firing detection sensitivity. Adjusting the sensitivity can be useful when:

- When the scope is intermittently detecting cylinder firings. If this occurs, lower the setting to achieve a viewable pattern.
- When the scope is detecting noise or other events. If this occurs, raise the settings to achieve a viewable pattern.

It is important to note that detection sensitivity does not function like a standard scope trigger that triggers at a set level. Adjusting the sensitivity high (10-20kv), assuming it will trigger at the firing kV and display a pattern is incorrect.

The sensitivity setting is designed to detect and adjust the viewable pattern of an ignition waveform. A good starting point for most systems is 2.0 kV, however this can vary depending on the pickup. In most cases, start at the average spark kV of the system (typically 2 kV) and then make adjustments (high/low) as needed to find and display a viewable pattern. The following general rules of operation apply:

- **Higher** = less sensitive
- **Lower** = more sensitive

Setup Notes:

- With Wasted Spark ignition systems, the sensitivity level setting only displays on Channel 1, but the setting applies to both channels.
- Unless you are having problems detecting cylinders, a sensitivity setting of 2.0 kV is optimal for most ignition systems.
- When a cylinder firing is not detected because it is either firing too low to be detected at the current setting or is not firing at all, a blank space displays in the on-screen pattern. To verify a missed cylinder firing, lower the sensitivity setting to verify that the cylinder is firing, but firing too low to be detected at the current sensitivity setting. If a cylinder is not firing at all, the blank space on the graph will remain.
Secondary Ignition Adapter Leads

To display secondary ignition waveforms, optional secondary ignition coil adapter(s) and a coil adapter lead assembly are required.

NOTE
Visit https://diagnostics.snapon.com for more information on ignition test leads and adapters that are applicable with your diagnostic tool, and/or contact your sales representative.

Secondary Ignition Adapter Lead

The optional secondary ignition adapter lead is required for Ignition Scope testing and can be used with the secondary ignition clip-on wire adapter, coil-in-cap (CIC), or coil-on-plug (COP) secondary ignition adapters to display secondary ignition signals.

Connecting the Secondary Ignition Adapter Lead

1. Connect the black right-angle stackable ground lead into the diagnostic tool ground jack.
2. Connect the yellow lead into the diagnostic tool channel 1 jack.
3. Connect the adapter lead ground clamp to vehicle ground. If a jumper wire is used to extend the length of the adapter lead ground clamp lead, keep it as short as possible.
4. Connect the adapter lead RCA plug into the secondary ignition Clip-on or COP/CIC Ignition Adapter as needed.
5. Clamp the secondary clip-on adapter (Figure 9-70) over a spark plug or coil lead, or attach the applicable COP/CIC coil adapter to the vehicle ignition coil.
6. Isolate the leads from other components to avoid any unwanted noise that may be induced into the signal.

Secondary Ignition Clip-on Adapter

The optional clip-on adapter clips over a secondary ignition wire to pick up a signal. The Clip-on adapters RCA connector is connected to the secondary ignition adapter lead.

Inductive RPM Pickup Adapter

The optional Inductive RPM Pickup adapter (Figure 9-71) connects to the DB9F connector on the diagnostic tool, and is used as an external trigger for the ignition scope, and is also used for RPM calculations (which may be displayed onscreen).

The signal from this adapter is not displayed on a channel. The primary purpose of this adapter is to synchronize the scope to #1 cylinder (if connected to #1) in order for the scope to display the cylinders in the correct position on the screen.
Secondary COP/CIP Ignition Adapters

Vehicle specific and universal secondary ignition adapters are available as optional equipment. These adapters attach to the secondary ignition coil in order to pick up the secondary ignition signal.

- Universal stick and flag type adapters - are positioned next to or on a secondary ignition coil.
 - General purpose single flag pick-up.
 - General purpose stick pick-up.
- Vehicle specific Clip-on adapters are directly attached to (or next to) a secondary ignition coil (COP type) or to a distributor cap (CIC type).
 Secondary ignition coil-on-plug (COP) and coil-in-cap (CIC) adapters are available for universal and engine specific applications. All the adapters listed are available individually.
 - OEM specific COP adapters:
 - Ford (COP-1)
 - Chrysler (COP-2)
 - VW/Audi (COP-3)
 - Acura/Honda/Isuzu (COP-4)
 - Volvo/BMW (COP-5)
 - Mercedes-Benz (COP-6)
 - Mercedes-Benz Dual Type (COP-7)
 - BMW (COP-8)
 - Lexus (COP-9)
 - Chrysler/Jeep/Lexus/Toyota (COP-11)
 - OEM specific CIC adapters:
 - GM HEI (CIC-1)
 - Toyota/Honda (CIC-2)

Setup Notes:

When using COP/CIP adapters, check the Presets menu for existing scope COP/CIP presets to save time setting up the scope. See *Presets on page 140.*

Distributorless Ignition System Adapter (SIA 2000)

The primary use for the optional SIA 2000 Adapter Kit is to connect to multiple cylinders at once on Wasted Spark distributorless ignition systems.

A separate user manual is available for the SIA 2000 at: snapon.com/diagnostics/UserManuals

Digital kV View

Digital kV displays digital kilovolt readings, rather than waveforms, on the screen *(Figure 9-72).* Viewing all kV values on one screen can be useful when trying to find an intermittent problem.

![Figure 9-72 Sample Show Digital KV selected](image-url)
To open the Digital kV View, select Setup from the upper toolbar, then from the menu select View > Display > Show Digital kV. *(Figure 9-73).*

![Figure 9-73](image)

This feature displays the digital kV readings corresponding to the selected channel, and provides another way to monitor the secondary ignition system. When testing wasted spark ignition systems, power firings display on channel one and waste firings display on channel two.

NOTE

The digital values are only as good as the source signal. If there is a problem with the connections or setup and a stable waveform is not displayed, the digital value may not be calculated correctly. If problems are experienced with the digital values, check lead connections and setup settings. If a measurement cannot be calculated, dashes display in place of values.

Digital kV, Spark kV, and Spark Duration (burn) measurements are calculated from the secondary waveform.

- **Firing kV (FKV)**—voltage required to overcome the rotor and spark plug gaps and establish a spark across the spark plug electrodes.
- **Spark kV (SKV)**—voltage required to maintain a spark across the spark plug electrodes
- **Spark Duration (Burn)**—time the spark is maintained across the spark plug electrodes.

Min/Max and current values for Firing kV, Spark kV, and Spark Duration are displayed as digital values for each cylinder in the firing order. Intermittent problems that happen too fast to be seen on the live waveform (without pausing / reviewing) will be captured in the Min/Max reading, making it possible to spot problems that can be difficult to see in the live waveform.

Digital kV / Multiple Spark Ignition Systems

On vehicles with multiple spark ignition systems, when more than one spark per cylinder is present, Firing kV (FKV) is calculated at the start of the first spark and Spark kV (SKV) and Burn are calculated from the last spark.

To calculate the Digital kV and Burn measurements, select an ignition pattern with a 10 ms sweep, such as Parade 10 ms or Cyl 10 ms when testing a multiple spark system.

NOTE

Digital kV cannot be correctly calculated if, in the Ignition Scope view, the end of the last spark for each cylinder is near the end of the screen or off of the screen.
9.14.2 Ignition Waveform Reference

The following ignition waveform information is intended as general theory reference only, using distributor type ignition illustration examples.

Ignition waveforms have three basic sections (Figure 9-74). An ignition event begins with a firing line at the left of the screen, continues through the intermediate and dwell sections, and ends with the beginning of another firing line at the right edge of the screen.

The Ignition Cycle

Waveforms have specific points that show important information when checking an ignition system. A complete ignition cycle of a cylinder runs from primary current switching on to the next primary current on event. Therefore, the description and explanation of the waveforms begins just before primary current switches on. See following page for description of image callouts.
Start of Ignition

Figure 9-74 (1) - High voltage is induced, by mutual induction, into the secondary winding because of the primary to secondary turns ratio. The secondary voltage overcomes the resistance in the secondary circuit up to the spark plug gap. The spark plug gap is ionized and current arcs across the electrodes to produce the spark that initiates combustion.

Spark Line

Figure 9-74 (2) - Voltage is reduced to about 1/100th of the secondary voltage, because of the 100:1 step-down ratio. This is the actual discharge across the air gap between the spark plug electrodes.

End of Ignition

Figure 9-74 (3) - The coil energy is no longer able to sustain the spark across the electrodes at this point.

Coil Oscillations

Figure 9-74 (4) - An oscillating voltage results (in step with the secondary voltage) because of the step-down ratio as current dissipates in the primary circuit.

No Current in the Primary Coil

Figure 9-74 (5) - The trace flattens out when there is no longer current in the primary ignition circuit. Battery or charging system voltage available at this point is about 12 to 15 volts.

Primary Current Turns On

Figure 9-74 (6) - The primary circuit switching device switches on the primary current. This starts the dwell period.

Start of Primary Current

Figure 9-74 (7) - Current in the primary circuit establishes a magnetic field in the ignition coil windings. The strength of the field builds during the dwell period.

Current Limiting

Figure 9-74 (8) - This represents the dwell period or "on-time" of the ignition coil primary current:

- The rise in voltage (primary waveform) indicates that current limiting is occurring.
- On ignition systems that use current limiting to control the coil current, a current hump or voltage ripple appears on the "on-time" portion of the primary waveform during the dwell section.

Primary Current Turns Off

Figure 9-74 (9) - The primary switching device stops the primary current flow suddenly. The magnetic field that had built up collapses. This induces a high voltage in the primary winding by self-induction.
9.15 Presets

Selecting Presets opens a menu of pre-configured tests (Figure 9-76). Presets are tests set up with pre-configured control settings for common component tests.

In addition to the built-in presets, you can create your own custom test configurations and save them as presets, see Saving Data on page 128 for additional information.

![Preset Examples](image)

9.16 Test Leads and Accessories

Some of the leads, probes and adapters supplied with or that may be available, are explained in the following sections.

NOTE

Visit https://diagnostics.snapon.com for more information on ignition test leads and adapters that are applicable with your diagnostic tool, and/or contact your sales representative. Not all test leads and/or accessories may be available in all markets.

9.16.1 Channel 1 Lead

The shielded yellow lead is used with channel 1, and is color matched with the channel 1 jack on the diagnostic tool.

![Yellow Channel 1 Lead](image)

The channel 1 lead includes two black, right-angle common ground connectors:

- (1) **Non-stackable** - always connect to the ground (GND) jack on the diagnostic tool.
- (1) **Stackable** - connect to the channel 2 (green lead) stackable ground connector or other applicable lead ground connector.

The stackable ground lead is internally connected to the standard ground lead, therefore it does not need to be connected to the diagnostic tool ground jack.

9.16.2 Channel 2 Lead

The shielded green lead is used with channel 2, and is color matched with the channel 2 jack on the diagnostic tool. This lead also includes a black, right-angle stackable ground plug.

![Green Channel 2 lead](image)
9.16.3 Channel 3 Lead

![Figure 9-79 Blue Channel 3 lead]

The non-shielded blue lead (Figure 9-79) is used for either Channel 3 or Digital Meter minus (–). The lead color matches the color of socket 3 on the Scope Module, as well as the color of trace 3 on the test screen.

9.16.4 Channel 4 Lead

![Figure 9-80 Red Channel 4 lead]

The non-shielded red lead (Figure 9-80) is used for either Channel 4 or Digital Meter plus (+). The lead color matches the color of socket 4 on the Scope Module, as well as the color of trace 4 on the test screen.

9.16.5 Alligator Clips and Probes

Insulated alligator clips and probes (pointed type) can be attached to the end of the test leads. Each alligator clip is color matched with a test lead, and the probes are available in red and black.

9.16.6 Low Amp Current Probe (optional)

![Figure 9-82 Low Amp Current Probe]

The Low Amp Current Probe is used to measure AC or DC current up to 60A. This probe includes two scales (0 to 20A) and (0 to 60A) that can be used to provide accurate and reliable non-intrusive current measurement for components such as, ignition coils, fuel injectors, fuel pumps, relays, and electric motors.

9.16.7 Temperature Probe Adapter (optional)

![Figure 9-83]

The temperature probe adapter can be used to measure temperatures ranging from –50° F to 1,800° F. Different probes are available for surface, fluid and air temperature measurements.
9.16.8 Pressure Transducers and Adapters (optional)

Different pressure transducers and adapters are available for measuring positive and negative gas and liquid pressures. Depending on the adapter, measurement capabilities range from 1 to 5000 psi and up to 29 inHg. Measurement and application capabilities vary per device.

9.16.9 Waveform Demonstration Tools (optional)

To help you sharpen your lab scope and graphing multimeter skills, optional waveform demonstration tools are available as a training aid. These demonstration tools generate common waveforms, and allow you to vary their display characteristics by turning glitches on/off, helping you to become more familiar with the lab scope controls. Common waveforms include, AC sine wave, variable frequency and pulse, secondary ignition, and more. There are two tools currently available, the standard model (Figure 9-85 left) and the vehicle simulator model (Figure 9-85 right) which produces waveforms (e.g. Crankshaft Position Sensor (CKP), Camshaft Position Sensor (CMP), Accelerator Pedal Sensor (APP), Wheel Speed Sensor (WSS) Signals, and more) representative of a 2012 BMW 328i Sedan.

9.17 General Reference (Testing Strategies)

9.17.1 Basic Setup Tips (unknown signal type)

When conducting automotive diagnostics, situations may arise when you need to capture and analyze a signal that you are not familiar with, do not know what the intended waveform pattern should look like, or even how to set the scope to acquire the signal.

The following tips are intended to provide guidance, at the most basic level to assist you in your lab scope diagnostics.

Testing information and/or procedures for testing certain components may be available in the Guided Component Test function, see Guided Component Tests on page 86 for additional information. If you have already narrowed down the system and/or component to test, ID the vehicle within the Guided Component Test function, and check the available tests first, as this may save you some time.

If the Guided Component Test function, does not have the test you are looking for, you need to determine are few thing about what you are testing to get the scope / meter set up to capture a signal or make a measurement.

NOTE

Testing information and known good waveform libraries may also be available from other sources (e.g. ShopKey Pro or other online sources). Obtaining correct testing reference information can be a key advantage in making sound repair decisions.
Listed below are a few basic questions to help narrow down the testing direction to follow.

- Are you looking to make or test a simple voltage or current level or maybe check resistance or continuity? Then you may want to use the DMM.
- Are you looking to check a circuit/component for an erratic dropout or make a frequency test? You may want to use the GMM.
- Do you need to see signal details (level, shape, frequency etc.)? The lab scope may be the best choice.
- Are you testing a DC or AC signal?
- What is the operating range of the circuit?
- Do you know what type or shape the intended waveform should be?

After answering the previous questions (at a minimum), you need to determine which Scope / Multimeter test function you are going to use (e.g. Lab Scope, DMM or GMM). See Tests and Capabilities (Quick Reference) on page 96.

Once your test function is selected, you can now connect the test leads and select the applicable probe and scales:

- Probe (test) type, see Probe Icon on page 113
- Vertical scale, see Scale (Vertical / Y-axis) on page 116
- Sweep scale, see Sweep Scale (X-axis) on page 116

Connect the test leads or probe, to the applicable test point(s). Always use the correct lead or probe designed for the test and ensure the signal and ground connections are clean and secure.

For the initial setup, you may wish to turn other channel settings off (e.g. Peak, Filter, Invert, AC Coupling, Threshold etc.), as these may affect the signal display. See Control Panel and Settings on page 111.

As a default setting, trigger is normally off. The scope/meter uses internal circuitry to display a signal if present. However, in certain circumstances additional channel adjustments may be required, or the trigger mode may have to be turned on, for a signal that is present but not displayed. You may also need to readjust the vertical scale if set to low, in order to bring the signal into the viewable display area.

At this point you should have a visible signal on the screen. An ideal signal should be displayed within the area of the display.

- If the signal goes beyond the top and bottom of the display, try and readjust the vertical scale to a higher setting, to bring the signal into the viewable display area.
- If you have a usable signal displayed, if needed use the trigger function to stabilize a changing or erratic signal (a signal that may flicker or drift), so that it is easier to view. Try and set the trigger at the mid-point of the signal, and then adjust as needed from there. See Triggers on page 119.

As all signals are different, and due to other variables, additional adjustments may be needed to get the signal displayed exactly how you need. Review the channel settings section in this manual for additional information on using the settings. See Control Panel and Settings on page 111.

At this point you should have a signal displayed that will allow you to see the overall signal characteristics, and allow you to begin your diagnosis.

Comparing your captured waveforms to known good waveforms, can be a time saver and provide supporting evidence when trying to determine a fault. See the next section for additional information.

9.17.2 Using Known Good Waveforms

In some cases captured waveforms may not provide enough information to determine if a suspected sensor or circuit is at fault. Comparing the test vehicle waveforms to known good waveforms, can help to provide supporting evidence when trying to determine a fault.

Known good waveform examples may be available from different sources including the Guided Component Tests function, information services (e.g. ShopKey Pro) or from other sources.

One of the many resources available within ShopKey Pro is the comprehensive collection of known good component waveform examples gathered through actual vehicle tests. Waveform and PID graph screenshot examples are provided by fellow member technicians and shared with all members in a searchable (vehicle/component specific) database.

As good practice, capturing waveforms before and after the repair will help you to build your own library of waveforms for future troubleshooting.

Use the Snap-on Diagnostics forums to find examples and ask questions also: http://productforum.autorepairdata.com
9.17.3 Troubleshooting Signals

When capturing signals, you may occasionally encounter problems with the way the signal initially displays. Noise, hash and fuzz are some of the terms used to describe unwanted signals displaying in or on the signal you are trying to capture, basically making the signal unclear. The following tips are intended to provide some basic guidance, to help resolve these types of issues if encountered.

• Make sure you have the correct test leads connected to the applicable test point(s) and test lead jacks on the diagnostic tool.
• Ensure the signal and ground connections are clean and secure, at the test points and diagnostic tool.
• Ensure the polarity of the test leads connections are correct.
• If using stackable connectors, try to isolate or only connect the leads being used to capture the signal.
• Make sure the ground lead is providing a direct ground from the circuit to the diagnostic tool test lead jack.
• Isolate the test leads from other components, leads, or systems that may induce unwanted noise into the signal being tested (e.g. electric motors, secondary ignition components, relays, alternators, etc.)
• Use the shortest test leads possible.
• Try different test leads, to verify the issue. Use the recommended snap-on leads or probes available for the diagnostic tool or equivalent. Shielded test leads are recommended.
• Check the test lead or probes for damage.
• Enable or disable channel controls also to help try and clean the signal:
 – Peak Detect Icon—maximizes sampling rate, but may pickup unwanted noise
 – Filter Icon—removes signal noise or interference
 – Invert Icon—switches signal polarity
 – Coupling AC Icon—blocks the DC portion of signal
 – Threshold Auto/Manual (GMM Only)—provides a more accurate measurement on select GMM tests where noise is present
 – Scale (Vertical / Y-axis)—adapts vertical scale. Using a higher setting may provide a cleaner signal in some situations.

For signals that do not display or display off the screen, erratic, compressed etc.:

Use a trigger to help stabilize the signal. Try and set the trigger at the mid-point of the signal, and then adjust as needed from there. See Triggers on page 119.

If the signal wraps off the top and bottom of the display, try and readjust the vertical scale to a higher setting, to bring the signal into the viewable display area. See Scale (Vertical / Y-axis).

If the signal cycles are compressed (close to each other), try and readjust the sweep scale (horizontal scale) to a lower setting to display less cycles. Try a higher setting if the cycles are spread too far across the screen and seem flat. See Sweep Scale (X-axis).

Move the zero baseline marker to move the zero baseline of the signal vertically on the screen to the desired position. See Zero Baseline Adjustment on page 117.

• Check calibration of test leads or probe(s) if applicable. See Test Lead / Probe Calibration on page 103.

9.17.4 Units of Measurement / Conversions

<table>
<thead>
<tr>
<th>Base Units</th>
<th>(Symbol) / Unit Prefix</th>
<th>Typical Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(µ) micro</td>
<td>0.000001 or 10⁻⁶ or 1/1,000,000</td>
</tr>
<tr>
<td></td>
<td>(m) milli</td>
<td>0.001 or 10⁻³ or 1/1,000</td>
</tr>
<tr>
<td></td>
<td>(c) centi</td>
<td>0.01 or 10⁻² or 1/100</td>
</tr>
<tr>
<td></td>
<td>(k) kilo</td>
<td>10³ or 1,000</td>
</tr>
<tr>
<td></td>
<td>(M) mega</td>
<td>10⁶ or 1,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Units</th>
<th>(Symbol) / Description</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>(µV) microvolt</td>
<td>1 µV = 0.000001 V</td>
</tr>
<tr>
<td></td>
<td>(mV) millivolt</td>
<td>1 mV = 0.001 V</td>
</tr>
<tr>
<td></td>
<td>(V) volt</td>
<td>1 V = 1000 mV</td>
</tr>
<tr>
<td></td>
<td>(kV) kilovolt</td>
<td>1kV = 1,000 Volts.</td>
</tr>
<tr>
<td>Ohms</td>
<td>(mΩ) milliohm</td>
<td>1 mΩ = 0.001 ohms</td>
</tr>
<tr>
<td></td>
<td>(Ω) ohm</td>
<td>1 Ω = 1000 mΩ</td>
</tr>
</tbody>
</table>
Electrical Units

<table>
<thead>
<tr>
<th>(Symbol) / Description</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kΩ) kiloohm</td>
<td>1 kΩ = 1000 Ω</td>
</tr>
<tr>
<td>(MΩ) megaohm</td>
<td>1 MΩ = 1,000,000 Ω</td>
</tr>
<tr>
<td>Amperes</td>
<td></td>
</tr>
<tr>
<td>(µA) microamps</td>
<td>1 µA = 0.000001 amps</td>
</tr>
<tr>
<td>(mA) milliamps</td>
<td>1 mA = 0.001 amps</td>
</tr>
<tr>
<td>(A) amps</td>
<td>1 A = 1000 mA</td>
</tr>
<tr>
<td>(ka) kiloamps</td>
<td>1 ka = 1000 amps</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>(MHz) megahertz</td>
<td>1 MHz = 1,000,000 Hertz</td>
</tr>
<tr>
<td>(kHz) kilohertz</td>
<td>1 kHz = 1000 Hertz</td>
</tr>
</tbody>
</table>

Pressure Units

<table>
<thead>
<tr>
<th>(Symbol) / Description</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>(psi) pounds per square inch</td>
<td>1 psi = 6894.757 Pa</td>
</tr>
<tr>
<td></td>
<td>1 psi = 0.06894757 bar</td>
</tr>
<tr>
<td></td>
<td>1 psi = 2.036021 inHg</td>
</tr>
<tr>
<td>(bar)</td>
<td>1 bar = 14.50377 psi</td>
</tr>
<tr>
<td></td>
<td>1 bar = 100000 Pa</td>
</tr>
<tr>
<td></td>
<td>1 bar = 29.52999 inHg</td>
</tr>
<tr>
<td>(Mbar) Millibar</td>
<td>1 Mbar = 0.001 bar</td>
</tr>
<tr>
<td>(Pa) pascal</td>
<td>1 Pa = 0.0001450377 psi</td>
</tr>
<tr>
<td></td>
<td>1 Pa = 0.00001 bar</td>
</tr>
<tr>
<td></td>
<td>1 Pa = 0.0002952999 inHg</td>
</tr>
<tr>
<td>(kPa) KiloPascal</td>
<td>1 kPa = 1000 Pa</td>
</tr>
<tr>
<td>(MPa) Megapascal</td>
<td>1 MPa = 1,000,000 Pa</td>
</tr>
<tr>
<td>(inHg) inches of mercury</td>
<td>1 inHg = 0.03386388 bar</td>
</tr>
<tr>
<td></td>
<td>1 inHg = 0.4911541 psi</td>
</tr>
<tr>
<td></td>
<td>1 inHg = 3386.388 Pa</td>
</tr>
</tbody>
</table>

Pressure Conversions

psi x 0.0689 = bar	
psi x 6.8950 = kPa	
psi x 0.0703 = kg/cm²	

Temperature Units

<table>
<thead>
<tr>
<th>(Symbol) / Description</th>
<th>Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°C) degree Celsius</td>
<td>°C = 0.556 x (°F - 32)</td>
</tr>
<tr>
<td>(°F) degree Fahrenheit</td>
<td>°F = (1.8 x °C) + 32</td>
</tr>
</tbody>
</table>

Time Units

<table>
<thead>
<tr>
<th>(Symbol) / Description</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>(µs) microsecond</td>
<td>1 µs = 0.000001 of a second</td>
</tr>
<tr>
<td>(ms) millisecond</td>
<td>1 ms = 0.001 of a second</td>
</tr>
<tr>
<td>(s) second</td>
<td>1 s = 1000 ms</td>
</tr>
</tbody>
</table>

Duty % to Dwell Conversions

<table>
<thead>
<tr>
<th>Duty Cycle</th>
<th>4 cyl</th>
<th>6 cyl</th>
<th>8 cyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.0</td>
<td>6.0</td>
<td>4.5</td>
</tr>
<tr>
<td>20</td>
<td>18.0</td>
<td>12.0</td>
<td>9.0</td>
</tr>
<tr>
<td>30</td>
<td>27.0</td>
<td>18.0</td>
<td>13.5</td>
</tr>
<tr>
<td>40</td>
<td>36.0</td>
<td>24.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>
Glossary of Common Terms

<table>
<thead>
<tr>
<th>Term / Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current - electrical current that switches polarity at regular intervals.</td>
</tr>
<tr>
<td>Aliasing</td>
<td>An effect that causes an incorrect signal to be displayed and/or causes a trigger to malfunction, due to the input signal exceeding the sample rate of the scope.</td>
</tr>
<tr>
<td>Amperage</td>
<td>The strength of an electric current, expressed in amperes.</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Vertical magnitude (level or position) of a signal, or the varying quantity from its zero value.</td>
</tr>
<tr>
<td>Buffer</td>
<td>An electronic reservoir for temporary storage of data.</td>
</tr>
<tr>
<td>Cursor</td>
<td>Onscreen markers used to measure time, amplitude and frequency.</td>
</tr>
<tr>
<td>Coupling AC</td>
<td>Function used to subtract the average value of a signal so that small variations can be displayed in the waveform.</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current - electrical current that flows in one direction only.</td>
</tr>
<tr>
<td>Delta</td>
<td>Difference in time between two events.</td>
</tr>
<tr>
<td>Dropout</td>
<td>An intermittent or unwanted, vertical fall in a signal to zero that may cause an undesired result.</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Measurement of the length of a signals on time. Specified as a percentage (ratio), of the total cycle time.</td>
</tr>
</tbody>
</table>

Duty to Dwell Conversions

<table>
<thead>
<tr>
<th>Duty Cycle</th>
<th>Dwell 4 cyl</th>
<th>Dwell 6 cyl</th>
<th>Dwell 8 cyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>45.0</td>
<td>30.0</td>
<td>22.5</td>
</tr>
<tr>
<td>60</td>
<td>54.0</td>
<td>36.0</td>
<td>27.0</td>
</tr>
<tr>
<td>70</td>
<td>63.0</td>
<td>42.0</td>
<td>31.5</td>
</tr>
<tr>
<td>80</td>
<td>72.0</td>
<td>48.0</td>
<td>36.0</td>
</tr>
<tr>
<td>90</td>
<td>81.0</td>
<td>54.0</td>
<td>40.5</td>
</tr>
<tr>
<td>100</td>
<td>90.0</td>
<td>60.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Term / Abbreviation</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Transducer</td>
<td>Electronic device that converts pressures (negative/positive) to electrical signals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>A signal with abrupt (fast) signal direction changes in a positive or negative direction, with consistent level and duration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Period</td>
<td>One complete on and off cycle or time period.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Train</td>
<td>Collection of signal pulses traveling together.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width (duration)</td>
<td>Measurement of a signal's on time in a circuit that pulses on and off. Specified in units of time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width Modulation (PWM)</td>
<td>A signal that continuously cycles on and off while the on-time varies within each cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>The RMS (root mean square) value of alternating currents and voltages is the effective current or voltage applied, rather than the peak current or voltage measurable. The AC RMS voltage value can be defined as the equivalent DC voltage of the AC voltage measured. RMS values are commonly used in AC electrical measurement, as they are more representative of DC measurements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Rate</td>
<td>Number of times (frequency) the scope/meter takes a sample of the signal. Specified in mega samples per second (MS/s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td>Process of obtaining a sequence of instantaneous values for a signal at regular or intermittent intervals. When a quantity of samples are collected the operational status of the device is determined.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Update Rate</td>
<td>How often the captured data is (updated) displayed on the screen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>Detectable voltage, current, or magnetic field, by which specific information is transmitted in an electronic circuit or system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square Wave</td>
<td>A square or rectangular waveform (digital) which alternately switches high to low (on/off) for specific lengths of time, that has very fast rise and fall times.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweep Scale</td>
<td>The horizontal scale on the grid. Also referred to as time scale or x axis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term / Abbreviation</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>The threshold function automatically sets a trigger and determines a threshold level in the middle of the signal range (calculated from the Min and Max measurements) to be used as a reference point to calculate the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>The actual visible line displayed on the scope screen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>A conditional function that initiates if and when a trace is drawn on the screen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Slope</td>
<td>The slope that a trigger source signal must reach before the trigger circuit initiates a sweep.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAC</td>
<td>Volts Alternating Current.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDC</td>
<td>Volts Direct Current.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Scale</td>
<td>The vertical scale on the grid or (y-axis) represents what is being measured (voltage, amperage, pressure etc.), and the unit of measurement it is being measured in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt</td>
<td>Unit of electric potential difference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>Electromotive force or potential difference, expressed in volts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (inductive) Kick</td>
<td>A voltage, many times higher than the applied voltage, produced by the collapsing magnetic field in a coil when the current through it is abruptly terminated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveform</td>
<td>The graphic representation (form) of a signal over time, which the trace displays on the screen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Base Line</td>
<td>Reference setting or 0% level of a graph scale.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

This section describes the basic operation and navigation of the Quick Lookups function. Selecting Quick Lookups opens a menu providing two options, Oil Specs and Resets and TSBs.

Main Topic Links

- Oil Specs and Resets page 148
- TSBs (Technical Service Bulletins) page 150
- Tire and Wheel Service page 153

10.1 Oil Specs and Resets

Oil Specs and Resets provides up-to-date OEM information on your diagnostic tool, via wireless network connection with our Snap-on Information Service. This feature allows you to quickly access the following OEM information:

- Engine oil service reset procedures
- Engine oil specifications

In addition, you can perform engine oil service resets using the diagnostic tool (if supported).

NOTES

- Oil Specs and Resets coverage includes domestic and import cars, light trucks, and vans. Coverage is limited to vehicles sold through dealerships only in the United States.
- All vehicles may not have on-board diagnostic tool reset capabilities, or information available.
- If you experience a wireless connection loss, the Oil Specs and Resets function may stop. To continue use, you must re-establish your Internet connection.

The information and procedures provided by the Oil Specs and Resets function is vehicle specific, therefore a vehicle must be identified before information can be displayed.

Using the Oil Specs and Resets function

There are two methods to access this function:

- From the Home screen - select the Quick Lookups icon, then select the Oil Specs and Resets menu option (Figure 10-1), then proceed to Step 1.

- From within a current Scanner session - select Oil Specs and Resets from the Select System menu (Figure 10-2), then proceed to Step 3.
1. Follow the screen prompts to select vehicle attributes (e.g. Manufacturer, Year, Model etc.).
2. Select OK to confirm the vehicle.
3. Wait for the OEM Information screen to be displayed. The Fluid Capacities screen is displayed by default, other options are available from the toolbar:
 - **Print** - opens the print preview screen. See Printing / Printer Setup.
 - **Fluid Capacity** - Displays OEM recommended engine oil specification and capacity information.
 - **Reset Procedure** - Displays OEM engine oil service interval reset instructions, for the manual reset of the oil service indicator.
 - **Functional Reset** (if supported by the vehicle) - Opens the vehicle specific functional reset menu, allowing you to use the diagnostic tool to reset the oil service indicator.

NOTE

Not all vehicles may support on-board diagnostic tool reset capabilities, or provide reset instructions or specifications.

10.1.1 Fluid Capacity

Selecting **Fluid Capacity** displays OEM recommended engine oil specifications *(Figure 10-3)*. Typical information may include:
- Vehicle engine information
- Oil capacity specifications with or without oil filter
- Oil rating, weight and type
- Special notes

10.1.2 Reset Procedure

Selecting **Reset Procedure** displays OEM oil service reset instructions. Typical information may include:
- Step-by-step instructions for manually resetting the oil service reset indicator using on-board vehicle functionality (e.g. instrument cluster controls, accelerator pedal, information or media center controls, multi-function switch, etc.)
- Special notes, and or instructions
- Theory of operation

The following example *(Figure 10-4)* shows typical oil service reset instructions. Instructions and screens will vary by vehicle.
10.1.3 Functional Reset

Selecting **Functional Reset** opens the service interval reset menu (within the Scanner function) for the selected vehicle, and includes functional resets for the oil service indicator and other supported resets.

IMPORTANT

Instructions may be provided, which are required to be performed before selecting or completing the Reset function itself. Follow all instructions as written.

NOTES

— Functional resets are not available for all vehicles, and will vary depending on vehicle support. A screen message may display “Functional Reset is not available for this vehicle”, if not supported, or the Functional Reset icon may not be displayed in the toolbar.

— Service interval reset menu titles will vary by manufacturer.

1. Select the **Functional Reset** icon from the toolbar.
 The Scanner function opens to the service interval reset menu for the selected vehicle.
2. Select the applicable menu option(s) to perform the functional reset.
3. Read and perform any instructions that are provided.
4. If applicable, once the reset has completed select **OK** or **Continue**.
 The following screen examples (**Figure 10-5**) illustrate the typical engine oil life indicator reset menu navigation for a 2014 MINI Cooper. Other vehicle manufacturer menu navigation will vary.

10.2 TSBs (Technical Service Bulletins)

The TSBs function can provide the following (if available) for the identified vehicle:

- Original Equipment Manufacturer (OEM) Technical Service Bulletins, Recalls and Campaigns
- National Highway Traffic and Safety Administration (NHTSA) recalls
- Technical Tips and Service News Information from select manufacturers
- Updated Service Information
- Updated Part Numbers and Components
NOTES

— TSBs coverage includes domestic and import cars, light trucks, and vans. Coverage is limited to vehicles sold through dealerships only in the United States.

— If you experience a wireless connection loss, TSBs data will not refresh and/or may cause the program to stop. To continue use, you must re-establish your internet connection.

Accessing TSBs (when a vehicle is previously identified):
When a vehicle has been previously identified, you can access TSBs by selecting the TSBs icon from the toolbar menu (Figure 10-6). The TSBs icon on the toolbar menu becomes active (icon displays with safety symbol) after a vehicle has been identified. See Identifying the Vehicle on page 43 for additional information on identifying a vehicle.

To select TSBs, see Using the TSBs function: on page 152.

Accessing TSBs (vehicle not identified or to change a vehicle):
If a vehicle has not been identified or you need to find TSBs for a different vehicle from the one that is identified, use the following procedure.

1. If needed, select the Change Vehicle Icon (Figure 10-7), to clear the currently identified vehicle.

2. Select the Quick Lookups icon from the Home screen (Figure 10-7).

3. Select TSBs from the menu.

4. Follow the screen prompts and select the vehicle Year, Manufacturer and Model.

NOTE

To create a favorites list, see Creating a favorites list: on page 153.

5. Confirm the vehicle, then press OK.
To select TSBs, see the next section Using the TSBs function: on page 152.
Using the TSBs function:
Available information (e.g. Technical Service Bulletins and recalls) is displayed in a list (Figure 10-9). Recalls and other safety related documents are typically displayed at the top of the list by category. TSBs and other service related information are categorized by system and components.

1. Select a category from the list, or perform a search using keywords.

When a category is selected, the results (links) are displayed (Figure 10-10). A description, publish date and OEM reference number are provided for reference.

Figure 10-9 Typical - TSB list display

Figure 10-10 Typical - TSBs links displayed
2. Select a link to display service information (Figure 10-11). Use the scrollbar to view all the contents of the window.

 Typical TSBs information may include:
 - Vehicles involved
 - Service notes
 - Symptoms and Conditions
 - Diagnosis and Repair Procedures
 - Parts Required
 - Time Allowances

Selecting the Print icon opens the print preview screen (Figure 10-11).

Creating a favorites list:
1. From the Vehicle Manufacturer selection window, select Configure Favorites from the menu.

 The vehicle manufacturers selection window opens (Figure 10-12).
2. Select (highlight) the vehicle manufacturers to include in your custom list.

3. Select Finished.

![Figure 10-12 Typical - Configure favorites window](image)

10.3 Tire and Wheel Service

Tire and Wheel Service is located in the Quick Lookups main menu (Quick Lookups > Tire and Wheel Service).

Tire and Wheel Service provides OEM information on your diagnostic tool, via wireless network connection with our Snap-on Information Service. This feature allows you quick access to the following information:

- Tire Pressure Monitoring System (TPMS) Indicator Reset Procedures
- TPMS Relearn Procedures
- Tire Pressure Sensor Removal/Installation Procedures
- Tire Fitment Specifications

Tire and Wheel Service can also provide (when available) quick access to the following diagnostic functions when connected to a vehicle:

- View and Clear TPMS Related Codes
- View TPMS Related Data
- Perform TPMS Related Functional Tests
- View TPMS Troubleshooter Information
NOTES

— Tire and Wheel Service vehicle coverage is the same as the Scanner vehicle coverage.

— Not all vehicles may have on-board diagnostic tool reset capabilities, or have information available.

— If you experience a wireless network connection loss, Tire Service information will not refresh and/or may cause the function to stop. To continue use, you must re-establish your Internet connection.

— Performance may vary depending on your wireless network equipment and ISP.

10.3.1 Operation

NOTE

The information and procedures provided by the Tire and Wheel Service function is vehicle specific, therefore a vehicle must be identified before information can be displayed.

Using the Tire and Wheel Service function

There are two methods to access this function:

• From the Home screen - select the Quick Lookups icon (Figure 10-13), then select Tire and Wheel Service, then proceed to Step 1 below.

• From within a current Scanner session - select Tire and Wheel Service (or applicable choice) from the System menu (Figure 10-14), then proceed to Step 3 below.

1. Follow the screen prompts to select the vehicle, Manufacturer, Year and Model.
2. Select OK to confirm the vehicle.
3. After the TPMS Reset instruction screen displays, you can navigate to other options as needed, see Tire and Wheel Service Toolbar Icons.

NOTE

Depending on the active function, descriptive information is displayed in the main body of the screen. If applicable, use the scroll bar to scroll up/down to view all of the information.
Tire and Wheel Service Toolbar Icons

The following provides a brief description of the related Tire and Wheel Service toolbar icon functions. Detailed descriptions are provided in the following sections.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Icon Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPMS Indicator Reset</td>
<td>Displays TPMS indicator reset instructions, to perform a manual reset of the TPMS indicator. See TPMS Indicator Reset.</td>
</tr>
<tr>
<td></td>
<td>Remove and Repair (TPMS Service)</td>
<td>Displays TPMS service information. See TPMS Indicator Reset.</td>
</tr>
<tr>
<td></td>
<td>Scanner Functions</td>
<td>Opens the TPMS test related Scanner menu. Options may include, view and clear codes, display data, and access functional tests using the diagnostic tool.</td>
</tr>
<tr>
<td></td>
<td>Tire/Wheel Specifications (Fitment)</td>
<td>Displays OEM tire and wheel specifications.</td>
</tr>
</tbody>
</table>

TPMS Indicator Reset

Selecting the **TPMS Indicator Reset** icon displays TPMS indicator reset instructions. Typical information may include:

- Instructions for manually resetting the TPMS indicator using on-board vehicle functionality.
- Special notes, and/or instructions
- Theory of operation

During content download, progress messages may display until the image is fully downloaded, and can be displayed.

Use the scroll bar to scroll up/down to view all of the information.

The following example (**Figure 10-15**) shows a typical TPMS indicator reset instructions. Instructions and screens will vary by vehicle.

![Figure 10-15](image)
TPMS Remove & Repair (TPMS Service)

Selecting the **Remove & Repair (TPMS Service)** icon displays TPMS service information. Typical information may include:

- Removal and installation instructions.
- Relearn/enable procedures
- Diagnostic testing procedures
- Theory of operation

During content download, progress messages may display until the image is fully downloaded, and can be displayed.

Use the scroll bar to scroll up/down to view all of the information.

The following are examples (**Figure 10-16**) of typical TPMS service procedures. Results will vary by vehicle.

Tire/Wheel Specifications (Fitment)

Selecting **Tire/Wheel Specifications** displays OEM tire and wheel specifications (**Figure 10-17**).

Typical information may include:

- Tire size and pressure
- Wheel hub stud size and lug torque
- Wheel size

![Figure 10-16](Image)

![Figure 10-17](Image)
Scanner Functions

Selecting the **Scanner Function** icon opens the TPMS Scanner test menu for the selected vehicle. Options may include:

- View and Clear Codes
- View Data
- Perform TPMS Related Functional Tests/Resets
- View TPMS Troubleshooter Information

IMPORTANT

Functional test instructions may be provided, that are required to be performed before selecting or completing the function itself. Follow all instructions as written.

NOTES

Scanner functions require connection and communication with the vehicle.

Functional tests/resets are not available for all vehicles, and will vary depending on vehicle support.

A "grayed out" or non-selectable icon indicates that functional resets/resets are not available for the selected vehicle.

Service test/reset menu titles will vary by manufacturer.

The following screen examples (**Figure 10-18**) illustrate some typical TPMS functional test screens.
Introduction

Selecting Vehicle History allows you to manage and retrieve vehicle records, for vehicles that have been previously identified. You can also reactivate a vehicle, eliminating the need to identify a vehicle again when performing a retest after repairs have been made.

Main Topic Links

- Vehicle Records List page 158
- Toolbar Icon Functions page 159

11.1 Vehicle Records List

The Vehicle Records List screen (Figure 11-1) lists all of the available vehicle records.

To sort records:

1. Select a category heading.

 The listed items resort according to the selected category. A triangle appears alongside the name of the column that was used for the sort.

2. Select the triangle in the heading to reverse the sort order.
To resize a column:
1. Select the line separating two columns.
 A line with arrowheads appears to show the column is ready for resizing.
2. Drag the line left or right to increase or decrease the column width.

11.2 Toolbar Icon Functions

The table below gives brief descriptions of the icons on the toolbar. Additional icon information is provided in the following sections.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back - Returns to the previously viewed screen.</td>
</tr>
<tr>
<td></td>
<td>Activate - Activates the selected vehicle, for use with other functions (e.g. Scanner, Guided Component Tests, etc). See Activate on page 159.</td>
</tr>
<tr>
<td></td>
<td>View - Opens the selected vehicle record. See View on page 159.</td>
</tr>
<tr>
<td></td>
<td>Delete - Deletes the selected vehicle record from memory. See Delete on page 160.</td>
</tr>
<tr>
<td></td>
<td>Manage - Opens the vehicle Manage Records screen. See Manage on page 161.</td>
</tr>
<tr>
<td></td>
<td>Search - Opens a window that allows you to locate a particular vehicle record. See Search and Show All on page 161.</td>
</tr>
<tr>
<td></td>
<td>Show All - Available only after a search, use to return to a complete vehicle records list. See Search and Show All on page 161.</td>
</tr>
<tr>
<td></td>
<td>Settings - Opens a window that allows you to configure which fields display on main records list screen. See Settings on page 161.</td>
</tr>
</tbody>
</table>

11.2.1 Activate

Select Activate to activate a vehicle for use in other functions (e.g. Scanner, Guided Component Tests, etc.). The diagnostic tool will use the identification information stored in the vehicle history record to load the correct vehicle database, so there is no need to identify the vehicle again.

To activate a vehicle:
1. Locate and highlight the desired vehicle record on the records list screen.
2. Select Activate from the toolbar.
 The Activate icon is removed from the toolbar once a vehicle has been selected.
3. Select the Home icon.
 The Home screen displays with the activated vehicle shown on the toolbar.
4. Select a function icon from the Home screen to begin testing (e.g. Scanner).

11.2.2 View

Select View to open, edit, add notes, and print a vehicle record.

To open and/or modify a vehicle record:
1. Highlight the desired vehicle record from the vehicle records list screen, then double click it, or select View from the toolbar.
 The record for the selected vehicle opens (Figure 11-2).
 The vehicle record includes vehicle ID information, DTC data, and other data entry fields for owner and vehicle information, and technician notes. Depending on the vehicle information that was used to identify the vehicle, some data may be already entered. The example below shows, DTC scan results from the last code scan performed, and an attachment “Vehicle System Report Data” PDF file.
 Vehicle ID information is captured slightly different across the different functions (e.g. Scanner, Guided Component Tests, etc.), as some functions may capture more/less information during the process. Selecting the Other Vehicle ID button, opens a listing of the captured vehicle ID fields from each applicable function. If more than one function was used to ID the vehicle, you are given the option to use that vehicle ID set as the default ID for the vehicle record.
NOTE

The attachments panel (Figure 11-3) lists all saved Code Scans, screenshots and camera images associated with the vehicle that was active at the time they were created. Double-click on the file to open it. All of these attachments are also uploaded to the Snap-on Cloud automatically when they are created. See The Snap-on® Cloud on page 200 for more information on using the Snap-on Cloud.

2. Use the virtual keyboard to enter information in the data fields. The data is automatically saved.

3. Select Back to return to the vehicle records list screen.

11.2.3 Delete

Select Delete to remove an individual record from the vehicle records list. Highlight the record to remove, then select Delete.
11.2.4 Manage

Select Manage to quickly remove individual records, or all the vehicle records from the vehicle records list. Highlight the record to remove, then select Delete, or use the Select All or Deselect All options to remove all records (Figure 11-4).

![Vehicle History | Manage Records](image)

Figure 11-4

11.2.5 Search and Show All

To search vehicle records:
1. Select Search from the toolbar.
2. Enter the text to search for.
3. Select the Search icon.

Matching records are displayed.

Select Show All on the toolbar to restore the complete vehicle records list.

11.2.6 Settings

Use Settings to determine which categories display on the vehicle records list.

To change vehicle record list settings:
1. Select Settings to open the menu (Figure 11-5).

![Vehicle History | Settings](image)

Figure 11-5

2. Select or deselect the desired categories:
 - Highlighted items - display
 - Non-highlighted items - do not display
Introduction

This section describes the basic operation, and navigation of the Data Manager function.

Data Manager is used to store, sort, and view saved files.

Main Topic Links

- Data Manager Screen Layout page 162
- General Information page 163
- Toolbar Icon Functions page 164
- Vehicle System Report Viewer page 165
- Image Viewer page 166
- Scanner Data Viewer page 166
- Scope File Viewer page 172
- ShopStream Connect™ (Alternative Viewer) page 172

12.1 Data Manager Screen Layout

Selecting Data Manager opens the Data Manager screen displaying available file folders and a file viewer. This screen displays the contents of the Windows My Documents > ShopStream folder.

![Typical - Data Manager main screen](image)

1. Data Manager Toolbar
2. Folders Panel
3. Preview Panel - displays image files
4. Information Panel - displays a description of the selected file. Text changes are allowed for PID and Scope files, not image files. Use the Save icon to save changes.

Figure 12-1 Typical - Data Manager main screen
The folders panel may include these folders:

- **Camera Folder**—contains photos taken with the built-in camera. See *Image Viewer on page 166*.
- **CTM Data Folder**—contains saved Guided Component Test data files. See *Scope File Viewer on page 172*.
- **Sample Files**—contains an assortment of example data files.
- **Scanner Data Folder**—contains saved Scanner data files. See *Scanner DataViewer on page 166*.
- **Scope Multimeter Data Folder**—contains saved Scope Multimeter files. See *Scope File Viewer on page 172*.
- **Screenshots**—contains saved screen images. See *Image Viewer on page 166*.
- **Vehicle System Report Data Folder**—contains saved vehicle code scan reports. See *Vehicle System Report Viewer on page 165*.

12.2 General Information

12.2.1 File Location

Files saved within the Diagnostic Suite (e.g. Screenshots, Data Files) are saved in the Windows My Documents > ShopStream folder, the Data Manager folder panel contains the same folders.

12.2.2 Printing Files

Select files may have the option to print, see *Printing / Printer Setup*.

12.2.3 Moving / Copying Files

Using standard Windows operations, you can access, copy or move the saved files in the Windows My Documents > ShopStream folder at anytime.

The files may also be transferred to portable USB drives and then transferred to your PC.

12.2.4 Viewing Saved Files

- **Screenshots/Photos** - to view screenshots and photos taken using the built-in camera, see *Image Viewer on page 166*.

Vehicle System Report (Code Scan Report) - to view code scan reports saved while using the Scanner function, see *Vehicle System Report Viewer on page 165*.

Data Files - data type files (e.g. Scanner, Scope/Multimeter, Guided Component Tests) are saved using proprietary file extensions. To view these types of files, open them through the Data Manager folders panel. Each file type opens within a built-in proprietary viewer.

For Scanner files, see *Scanner DataViewer on page 166*.

For Scope/Multimeter files, see *Scope File Viewer on page 172*.

NOTE

Data files are not viewable on a PC, however ShopStream Connect can be installed on a PC as an alternative way to view data files. See *ShopStream Connect™ (Alternative Viewer)* on page 172 for additional information.

12.2.5 About Saved Folder/File Structure

The Diagnostic Suite automatically creates folders to manage saved files. Whenever 60 files are saved into any of the Data Manager folders, a new folder is created._folders may contain files for a day, week, month, or a year. An older folder, when available, goes to the next higher level in the files structure menu (*Figure 12-2*).
12.3 Toolbar Icon Functions

The table below describes the toolbar icons.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![My Data]</td>
<td>My Data - Returns to the Data Manager main screen.</td>
</tr>
<tr>
<td>![Up]</td>
<td>Up - Selecting once, moves up one level in the file structure.</td>
</tr>
<tr>
<td>![Open]</td>
<td>Open - Opens the highlighted folder or file.</td>
</tr>
<tr>
<td>![New]</td>
<td>New - Creates a new folder.</td>
</tr>
<tr>
<td>![Delete]</td>
<td>Delete - Moves the highlighted file or folder to the recycling bin.</td>
</tr>
<tr>
<td>![Rename]</td>
<td>Rename - Allows you to rename a selected file or folder.</td>
</tr>
<tr>
<td>![Save]</td>
<td>Save - Saves text changes made in the Information panel.</td>
</tr>
<tr>
<td>![Properties]</td>
<td>Properties - Allows you to change the file name and assign identifying attributes to Scope / Multimeter data files.</td>
</tr>
<tr>
<td>![Shortcut]</td>
<td>Shortcut - Creates a shortcut to the highlighted item on the Data Manager main screen.</td>
</tr>
<tr>
<td>![Email]</td>
<td>Email - Send data files as attachments, using Email. See Email on page 164 for information.</td>
</tr>
<tr>
<td>![More]</td>
<td>More (optional) - Opens hidden menu options</td>
</tr>
</tbody>
</table>

12.3.1 Email

Selecting the Email icon from the Data Manager toolbar allows you to send a saved data or image file as an attachment using e-mail. To use this feature, you must install an e-mail client, and then either link your existing e-mail address to the client, or create a new address. The following instructions are intended as a guide only.

To attach a file from a Data Manager folder to an e-mail:

NOTE

The Email feature uses your system default email client. Refer to Windows Help for instructions on setting your default e-mail client. For an example on how to setup an e-mail client, see E-Mail Client Setup on page 16.

1. From the Data Manager main screen, select a file from within one of the folders (e.g. Camera, Scanner Data, Scope Multimeter, etc). In this example (Figure 12-3), a Vehicle Systems Report was chosen from the Vehicle Systems Report Data Folder.

2. With the file highlighted, select Email from the toolbar.
3. A new e-mail message window will display onscreen (Figure 12-4).

4. Enter the e-mail address of the recipient, and any other information needed.
5. Select the **Send** icon to send the e-mail.

NOTE

You must have an Internet connection to send e-mail.

12.4 Vehicle System Report Viewer

Code Scan (trouble code reports) are saved in .pdf format and are viewable by opening them from the Vehicle System Report Data Folder in the Data Manager folder panel, or from within the Vehicle System Report Data folder in the Windows *My Documents > ShopStream* folder.

The built-in PDF viewer allows you to open, view and print the Vehicle System Report.

The following example (Figure 12-5) shows a typical Vehicle System Report.

To hide/show the timestamp (time of day) located next to the date (upper right), see *Code Scan (Timestamp) on page 178*.

To print, see *Printing / Printer Setup on page 19*.
12.5 Image Viewer

Screenshots and photos taken using the built-in camera are saved in .jpg format and are viewable by opening them from the Screenshots and Images folders in the Data Manager folder panel, or from within the Windows My Documents > ShopStream > Screenshots folder.

The built-in Image Viewer allows you to open, view and print image files and screenshots.

NOTE

Image files can also be viewed on most PCs.

12.6 Scanner DataViewer

Scanner data files are saved in a proprietary file format and are viewable by opening them from the Scanner Data Folder in the Data Manager folder panel, or from within the Windows My Documents > ShopStream > Scanner Data folder.

The built-in Scanner DataViewer (Figure 12-7) allows you to open, play and print Scanner data files.

Scanner DataViewer - Opens .pids, .scm, .scs, .scp and .spm file extensions

Figure 12-6

1. Exit - closes the Image Viewer
2. Print - prints the image
3. Captured Screen Image

Figure 12-7 Scanner Data Viewer

1. Menu bar
2. Display toolbar
3. Graph display
4. Properties icon
5. Vertical Scroll bar
6. Zoom controls
7. Slider bar
8. Navigation toolbar
9. Parameter text list
10. Parameter configuration tabs
12.6.1 Menu Bar

The menu bar at the top of the screen contains the File, View, Tools, and Help menus.

File Menu

The File menu offers the following selections:

- **Load**—locate and open data files, launches a navigation window
- **Print**—print selected pids
- **Print Preview**—preview pids before printing
- **Exit**—closes Scanner DataViewer

When Print or Print Preview is selected, a dialog box opens and allows you to define the printed output. Print settings include, print as graphs or text, which pids to include, number of pids per page, display colors, and the text font (*Figure 12-8*).

3. Once all selections are made, select **OK**.
 a. If Print was selected, the file is sent to the printer.
 b. If Print Preview was selected, a preview window opens. Select the printer icon (*Figure 12-9*) to send the file to the printer.

To print:

1. Select the desired pids. A checked box indicates the pid will be printed. Select again to deselect the pid.

2. Select **Change** to modify the font, this opens a standard Windows font dialog box.
 a. Modify the font as desired.
 b. Select **OK** to close the font dialog box.
View Menu

The View menu allows you to change how data is displayed on the screen (Figure 12-10).

Select from the following menu options:

- **Text Only**—shows all parameters and their values as text only
- **Graphs Only**—shows all parameters as graphs only
- **Text and Graphs**—shows all parameters and their values as text in the left panel of the screen, and shows them as graphs in the right panel of the screen

Tools Menu

The Tools menu opens the Properties dialog box which has two sections (Figure 12-11); Shared Graph Properties and Individual Properties. Shared Graph Properties apply to all graphs, and Individual Properties apply to the selected graph only.

Properties dialog box selections include:

- **Grid Lines**—when selected, a line displays at each major division of the graphs.
- **Display Item**—use to view the display color of the listed items. Highlight an item and the current color appears in the Color box.
- **Change**—use to change the color of the highlighted item, select to open a color palate.
- **Sweep**—use to adjust the number of data frames that appear on the screen (zoom in or out), highlight and type in the desired number.
- **Reset Colors**—use to restore the default color settings.
- **Data Item**—use this pulldown menu to select individual graphs for modification.
- **Auto Scale**—minimum and maximum (Y axis) values automatically adjust to the signal when the box is checked, uncheck the box if you want to custom set the values.
- **Y Axis Range**—use to type desired minimum (from) and maximum (to) values in the selection boxes. This field is only active when Auto Scale is deselected.
- **OK**—applies the changes and closes the properties dialog box.
- **Cancel**—closes the properties dialog box without making changes.
- **Apply**—applies the changes and leaves the properties dialog box open.

NOTE

The Properties icon on each graph also opens the Properties dialog box (Figure 12-7).

Help Menu

See *Help on page 31* for additional information.
12.6.2 Display Toolbar

The Display toolbar provides the following controls (Figure 12-12).

- **Exit**—closes Scanner DataViewer.
- **Hide PID List**—toggles display between parameter text and graph views.
- **Display Views (1 to 16)**—determines how many graphs display at a time.
- **Scale**—switches the scale values shown to the left of the graph off and on.
- **Sweep**—switches the sweep values shown below the graph off and on.

![Figure 12-12 Display toolbar](image)

12.6.3 Navigation Tools

Playback Controls

The playback controls allow you to navigate through saved data (Figure 12-13).

1. **Skip Back**—Allows backward movement in multiple steps.
2. **Step Back**—Allows backward movement in singular steps.
3. **Play**—Select to play.
4. **Step Forward**—Allows forward movement in singular steps.
5. **Skip Forward**—Allows forward movement in multiple steps.
6. **Pause**—Select to pause playback.

![Figure 12-13 Playback controls](image)

Zoom Controls

The zoom controls allow you to incrementally increase or decrease the screen magnification (Figure 12-14).

![Figure 12-14 Zoom controls](image)
Slider / Scroll Bars and Cursor

Use the slider bar to quickly navigate through the data (*Figure 12-15*). During playback the number displayed on the left side of the slider bar indicates the current position of the cursor in the data file. The cursor can be repositioned during playback or when paused by selecting and dragging.

Use the scroll bar (right side) to vertically scroll through the parameter list and graphs.

12.6.4 Customizing the Display

The parameter text list (left side) displays parameter names and current values. The display can be customized by selecting and dragging parameters from the text list or graph display to a different location in the text list or in the graph display (*Figure 12-16*). The highlighted parameters in the text list indicate which parameters are displayed as graphs.

NOTE

The parameter text list is sortable by name and value. Select Name or Value at the top of the list to change the sorted view.
12.6.5 Customizing the Parameter List

The parameter configuration tabs allow you to choose between displaying all available parameters (Complete List), or only those from a (Custom List) (Figure 12-17).

To customize the parameter list:
1. Select the Custom List tab (Figure 12-17).
2. Select Edit List in the custom window.

4. Select Save & Exit to close the window. Only the parameters selected in your custom list are displayed.
12.7 Scope File Viewer

Scope data files are saved in a proprietary file format and are viewable by opening them from the Scope Multimeter and CTM (component test meter) Data Folders in the Data Manager folder panel, or from the Windows My Documents > ShopStream > Scope Multimeter Data folder.

The built-in Scope File Viewer (Figure 12-19) allows you to open, play and print recorded trace signals captured on your diagnostic tool.

Many of the navigation features are similar to those used in the operation of the Scope / Multimeter, see Record/Playback Control Toolbar on page 129. Some Scope File Viewer icons may not be available or grayed out, this is normal as those features are only applicable when viewing live trace signals.

1. Toolbar - contains control icons
2. Main Body - displays recorded trace results
3. Controls Panel - contains the channel/trace settings
4. Playback Control Toolbar - contains playback and display controls

Figure 12-19

12.8 ShopStream Connect™ (Alternative Viewer)

Saved data files are intended to be viewed using the built-in proprietary viewers within Data Manager and are not viewable on a PC, however ShopStream Connect can be installed on a PC as an alternative way to view data files.

ShopStream Connect is PC-based program that allows you to manage, view, and print data files using a PC. ShopStream Connect is a free program available for download from our website: http://diagnostics.snapon.com/ssc
Help

Selecting Training and Support from the Home screen opens the Snap-on Diagnostics website (Figure 13-1).

From this web page you can view or download your diagnostic tool user manual and other related support information.

13.1 Additional HELP Resources

The following resources are also available help you, if you need additional assistance:

13.1.1 Phone - Technical Assistance

1-800-424-7226

13.1.2 E-mail

diagnostics_support@snapon.com

13.1.3 Website - Main

http://diagnostics.snapon.com

13.1.4 Website - User Manuals

Manuals / Technical Documentation - The information in this manual is periodically revised to ensure the latest information is included. Download the latest version of this manual and other related technical documentation at:

http://diagnostics.snapon.com/usermanuals

13.1.5 Website - Training and Support

Training and Support - Visit our Training and Support page (on our website) to access our knowledge base of product information, product training videos and Quick Tip videos, to see how to apply the diagnostic tool to solve common vehicle problems.

http://diagnostics.snapon.com (click on Training & Support Tab)
13.1.6 Website - Product Forums

Join The Discussion on the Snap-on Diagnostic Forums - Visit our Forums to communicate with other users to find answers and ask questions about our diagnostic products.

https://www1.snapon.com/diagnostics/us/CC/ProductForums.htm
(link also available on the Product Support, Product Training and Quick Tips pages)

13.1.7 Online Contact Form

https://www1.snapon.com/diagnostics/us/Contact

![Customer Care Contact Form](image-url)

Figure 13-2
Section 14
System Settings

Introduction
This section describes the basic operations of System Settings. Selecting System Settings from the Home screen opens a menu of options (Paired Devices, Shop Information, Data Backup, and Code Scan) to assist you in pairing the Compact Scan Module, create and edit your shop contact information, backing up or restoring your saved data, and setting the display option for the Vehicle System Report timestamp.

Topic Links
- Get Connected page 175
- Paired Devices page 176
- Shop Information page 176
- Data Backup page 177
 - Backup Settings (message) page 177
 - Backup page 177
 - Restore page 178
- Code Scan (Timestamp) page 178

14.1 Get Connected
Selecting Get Connected displays the required account setup information (Figure 14-1) needed to create a Snap-on Cloud account.

For detailed account setup information see, Registration - Getting Started on page 200.

![Figure 14-1](image-url)

Your files automatically backed up to the cloud...

Visit [ALTUSDRIVE.com](https://www.altusdrive.com)

Enter
- Serial Number: 177DDR200128
- PIN: 134CBC
- Code: D57AD321

Figure 14-1
14.2 Paired Devices

Selecting **Paired Devices** displays the active devices that are paired to the diagnostic tool. To use the Compact Scan Module, and the Scope Module with the diagnostic tool they must be paired to the diagnostic tool.

- For **Compact Scan Module** pairing information, see *Pairing and Hardware Status Icons* on page 36.
- For **Scope Module** pairing information, see *Pairing and Hardware Status Icons* on page 102.

The Paired Devices screen lists all of the devices paired to the diagnostic tool (**Figure 14-2**). The icon indicates the connection and communication status.

![Paired Devices](image)

Figure 14-2

14.3 Shop Information

Selecting Shop Information allows you to add personalized shop information that can be included on printed data files.

To add/change Shop Information:

1. From the System Settings menu select **Shop Information**.

 The Shop Information entry screen displays (**Figure 14-3**).

![Shop Information](image)

Figure 14-3

2. Enter your shop information, using the virtual keyboard or USB connected keyboard.

3. Select **OK** when finished.
14.4 Data Backup

Selecting Data Backup from the Systems Settings main menu provides the following menu options:

- Backup Settings (message)
- Backup
- Restore

14.4.1 Backup Settings (message)

Backup Setting allows you to choose the interval for displaying the backup reminder message, or turn the reminder off. Message options are:

- Every Week
- Every 2 Weeks
- Every 4 Weeks
- Never

14.4.2 Backup

Backup allows you to back up your saved data to a designated file on the internal hard drive, or to an external drive (e.g. USB flash drive). This option can be used as general maintenance to ensure you have a safe backup of your saved data, or if an issue occurs where a system restore (see Operating System Restore on page 22) is necessary and you need to retain your saved data.

Only the following types of data are backed up:

- ShopStream Data (saved movie/data files)
- Lab Scope Settings (presets)
- Vehicle History Records and Favorites

To Backup data files:

1. From the Home screen select System Settings.
2. From the System Settings main menu select Data Backup > Backup.
 The destination drive dialog box opens (Figure 14-4).
3. Select a drive destination.

NOTE

Drive designations (e.g. E:, F: etc.), are only visible when external drives are connected to the diagnostic tool.

System will back up your ShopStream Data, Scope Presets, Scope Global Settings, Shop Information, Vehicle History List, Vehicle Favorites, and Scanner Units.

Back up file name: 2017-03-07 16.12.sna
Please select your back up destination:

A progress screen is displayed as the backup file is saved to the root of the drive selected with a file extension of .sna. Then a confirmation screen is displayed.
4. Select OK to complete the procedure.
14.4.3 Restore

The Restore option is used to restore your backed up data, in the event that the data is lost or if a system restore (recovery) has been performed.

This function is only applicable when a backup file has been previously saved (file extension .sna). See Backup on page 177 for additional information.

To perform a data Restore:

1. From the Home screen select System Settings.
2. From the System Settings main menu select Data Backup > Restore. The restore file confirmation dialog box opens (Figure 14-5).
3. Select Continue.
4. Select the backup file (file extension .sna) from your backup file location.
5. Select Open to restore the backup file.
6. Select OK, then close and restart the Diagnostic Suite program.

The Windows restore backup file path dialog box opens.

The Restore option is used to restore your backed up data, in the event that the data is lost or if a system restore (recovery) has been performed.

This function is only applicable when a backup file has been previously saved (file extension .sna). See Backup on page 177 for additional information.

14.5 Code Scan (Timestamp)

Selecting Code Scan from the Systems Settings main menu allows you to hide/show the timestamp (time of day) on the Vehicle System Report.

Select the On/Off checkbox, then select OK from the toolbar to confirm the setting (Figure 14-6).

System will restore your ShopStream Data, Scope Presets, Scope Global Settings, Shop Information, Vehicle History List, Vehicle Favorites, and Scanner Units to C drive.

Please click Continue to select restore file.

Figure 14-5

The Windows restore backup file path dialog box opens.

4. Select the backup file (file extension .sna) from your backup file location.
5. Select Open to restore the backup file.

Once the file has been restored a confirmation message is displayed.

6. Select OK, then close and restart the Diagnostic Suite program.
Section 15

SureTrack® & Repair Information

Introduction

Using the **SureTrack & Repair Information** icon you can login to the online repair information services ShopKey® Pro or Pro Demand®, and SureTrack.

The first part of this section describes SureTrack, which starts with the next section below. ShopKey Pro / Pro Demand information starts with *Introduction to ShopKey Pro* on page 190.

15.1 SureTrack Main Topic Links

- **SureTrack Screens** page 180
- **Getting Started and Logging In** page 183
- **Creating a SureTrack Account** page 186
- **Finding your SureTrack Authorization Code** page 189
- **About Upgrade Reminder Messages** page 189
- **About SureTrack Status Messages** page 189

15.2 SureTrack Quick Reference Topics

- **SureTrack Community FAQ's** - For the latest SureTrack Community information and answers to frequently asked questions visit: mitchell1.com/support/suretrack-faqs/
- **Using SureTrack for the First Time** - If you have purchased a new diagnostic tool, you will need to create a SureTrack account before you can access SureTrack. See *Creating a SureTrack Account* on page 186 for instructions.
- **Reactivating SureTrack** - If you have recently purchased a software upgrade, you will need to reactivate your account to access SureTrack. See *Getting Started and Logging In* on page 183 for instructions.
- **Accessing SureTrack on your PC** - You can also use your PC to access the SureTrack Community, once your setup your SureTrack account. If you have already created a SureTrack account using your authorization code, simply login at www.ShopKeyPro.com. If you have not created a SureTrack account, see *Creating a SureTrack Account* on page 186 for instructions.

15.3 Introduction to SureTrack

SureTrack is an evolving database of "real-world" automotive repair knowledge based on expert knowledge and millions of actual repair orders. It was designed to help you improve diagnostic accuracy and reduce repair times.

SureTrack is an integrated part of ShopKey Pro (see, *What is ShopKey Pro?* on page 141), and includes two navigation modules providing search and forum capabilities:

- **1Search™ Limited**
- **Sure Track Community.**

NOTE

SureTrack is an optional Snap-on Information Service, see *Information Services* on page 5. To use SureTrack you must have the current software version installed on the diagnostic tool, and have a Wi-Fi Internet connection.
15.3.1 1Search™ Limited

The 1Search Limited module includes the following information features:

- **Real Fixes and Troubleshooter** - real-world fixes and repair tips captured from actual repair orders and the experiences of professional technicians.
- **Common Repair Procedures Graph** - graphical display of the specific parts and procedures most frequently used to fix the selected code or symptom.
- **ProView** - provides graphical displays showing the direct relationship between a code or symptom to the component used to fix them.
- **Component Tests** - includes instructions on how to test the component, and descriptions of component operation, component locations, test locations, connector end views and even sample waveforms.
- **TSB's** - OEM technical service bulletins.
- **Safety Recalls and Campaigns** - safety recall and service campaign information.

15.3.2 SureTrack Community

The SureTrack Community module is a forum-based application that connects you with a community of other professional technicians to find and share information, ask questions, and provide your own tips.

15.4 SureTrack Screens

15.4.1 SureTrack Home Page

The SureTrack Home page (resides within ShopKey Pro) includes:

1. **Change Vehicle** - dropdown menu provides options to change the active vehicle
2. **Active Vehicle** - displays active vehicle
3. **Recall/Campaigns** - displays available OEM recalls and campaigns
4. **Help** - provides SureTrack and ShopKey Pro online help topics
5. **Contact Us** - provides options for contacting ShopKey Pro customer service
6. **Settings** - provides general setting options and information
7. **Logout** - logs you off of ShopKey Pro
8. **User ID** options menu - displays username, selecting opens Profile Manager and other options
9. **Main Menu** (dropdown) - Options are Home, 1Search Limited, and SureTrack Community
10. **General Training and Information Links** (various)

* available on all pages
15.4.2 1Search Limited Top 10 Results Page

Selecting 1Search Limited displays a Top 10 results page which includes:

- **Search Bar** - use the search bar to enter a code, component or symptom to search. For best results keep search terms short (e.g. water pump, not - water pump replacement).

- **Page Tabs** - use the page tabs to navigate to related information (e.g. Index, SureTrack, ProView, etc) varies per application

- **Quick-links** - Technical Service Bulletins (TSBs) is the only available option

- **Repair Totals indicator** - displays the total number of repairs that all displayed data was based on

- **Top 10 lists** - display the most popular repairs and lookups by existing users for the selected vehicle (select an item from any list to view the Results Index, see Results Index Page on page 181)
 - Top 10 - Commonly Replaced Components
 - Top 10 - Common DTCs
 - Top 10 - Common Symptoms
 - Top 10 - Top Search Lookups

15.4.3 Results Index Page

The Results Index page includes:

- **OEM Plus Results** - provides results that best match the exact search criteria, ranked in order with the closest match at the top.

- **SureTrack Results** - provides probable components related to the search criteria, ranked in order from the most likely to the least likely component.

Select an item from either list to view the results, see SureTrack Results Page on page 182).
15.4.4 SureTrack Results Page

Selecting an item from the Results Index page displays applicable repair information on the SureTrack results page.

Information may include:

- **Real Fixes and Troubleshooter** - real-world fixes and repair tips captured from actual repair orders and the experiences of professional technicians.
- **Common Repair Procedures Graph** - graphical display of the specific parts and procedures most frequently used to fix the selected code or symptom.
- **Component Tests** - includes instructions on how to test the component, and descriptions of component operation, component locations, test locations, connector end views and even sample waveforms.
- **TSB's** - OEM technical service bulletins.
- **Safety Recalls and Campaigns** - safety recall and service campaign information.

Figure 15-4

15.4.5 ProView Results Page

Selecting the ProView tab from the SureTrack results page opens ProView. ProView provides graphical displays showing the direct relationship between a code or symptom to the component used to fix them.

Information may include:

- **Radial Graph** - showing the relationship of the code or symptom to possible at fault components.
- **Component Frequency Graphs** - showing the most commonly replaced component for that code or symptom.
- **Common Replaced Parts Graphs** - showing the mileage at which the most common component is replaced.

Figure 15-5
15.5 Getting Started and Logging In

NOTE

You must have the current software version installed on the diagnostic tool, and a Wi-Fi Internet connection to use SureTrack.

1. Selecting the **SureTrack & Repair Information** icon from the Home screen will result in one of the following experiences:
 - **A**: If you have an active vehicle (identified vehicle) on the diagnostic platform, you will be prompted to load the current vehicle. Select **OK** to continue using that vehicle or select **Cancel** to identify a different vehicle.
 - **B**: If a vehicle is not activated on the diagnostic platform, you will be prompted to identify a vehicle. Once you have identified the vehicle select **OK** to continue.

2. Selecting **OK** in either scenario above will display the login screen (**Figure 15-6**).

![Figure 15-6](image)

At the login screen (**Figure 15-6**), continue the login process using your applicable scenario:

- I already have an active SureTrack account with username and password - [Logging In (active account)]
- I purchased a diagnostic tool and need to setup and access SureTrack for the first time - [Creating a SureTrack Account]
- SureTrack has already expired, but I purchased a software upgrade and have a new SureTrack authorization code - [Logging In with New Authorization Code (active account)]
- SureTrack is still active, but I have purchased a software upgrade and have a new SureTrack authorization code - [Logging In with New Authorization Code (expired account)]
- I already have access to an active ShopKey Pro or ProDemand account - [Linking to an Active ShopKey Pro or Pro Demand Account]

15.5.1 Logging In (active account)

If you have previously created a SureTrack account, and have a valid username and password, select the **SureTrack & Repair Information** icon, follow the screen prompts and complete the login process (**Figure 15-7**). Once successfully logged in you will be directed to the 1Search Limited results page. See [SureTrack Screens](page 180).

NOTE

If you have previously selected the "remember me" checkbox in the login screen you will skip the login and be automatically directed to the 1Search Limited results page.

![Figure 15-7](image)
15.5.2 Logging In with New Authorization Code (active account)

Use the following instructions, if you have purchased the current diagnostic tool software upgrade and your SureTrack account is active (has not expired). To find your new authorization code, see *Finding your SureTrack Authorization Code* on page 189.

NOTE

You must have the current software version installed on the diagnostic tool, and a Wi-Fi Internet connection to use SureTrack.

1. Log in to SureTrack using your current username and password.
2. At the ShopKey Pro start page, select your username (*Figure 15-8*), then select **Profile Manager** from the dropdown menu.

![Figure 15-8](image)

3. Log in to the Profile Manger (*Figure 15-9*) using your current username and password.
4. Enter your new **Authorization code** (*Figure 15-9*).

![Figure 15-9](image)

5. Review and update the rest of your profile and make sure all required fields are filled out.
6. Select **Save**.
7. Exit the Profile Manager by selecting your username (near the top right) and select **Logout**.
8. When the login screen displays, login using your current username and password.
9. Confirm the new expiration date by logging back into Profile Manger to check it.
15.5.3 Logging In with new Authorization Code (expired account)

Use the following instructions, if your SureTrack account has expired, and you have purchased the current diagnostic tool software upgrade. Your new upgrade comes with a new SureTrack authorization code. To find your new authorization code, see Finding your SureTrack Authorization Code on page 189.

NOTE
You must have the current software version installed on the diagnostic tool, and a Wi-Fi Internet connection to use SureTrack.

1. Log in to SureTrack using your current username and password. When your SureTrack account has expired, and you try to login you are directed to an information window (Figure 15-10).
2. Scroll down and select the link shown in (Figure 15-10)

3. The SureTrack FAQ webpage opens (Figure 15-11).

4. Scroll to the topic “Where do I apply my new Authorization Key from Snap-on?”

5. Select the link “click here to log into the profile manager login window directly”. URL - https://profilemanager.mitchell1.com/technicianprofile/index

The SureTrack renewal window opens.

6. Enter your current username and password.

7. Enter your new Authorization code (Figure 15-12).
8. Review and update the rest of your profile and make sure all required fields are filled out.
9. Select Save.
10. Exit the Profile Manager by selecting your username (near the top right) and select Logout.
11. When the login screen displays, login using your current username and password.
12. Confirm the new expiration date by logging back into Profile Manager to check it.

15.5.4 Linking to an Active ShopKey Pro or Pro Demand Account

If you have access to an active ShopKey Pro or ProDemand account, and you want to access that account from the diagnostic tool (using the SureTrack & Repair Information icon), you need to associate the SureTrack account (associated with the diagnostic tool) with the ShopKey Pro or ProDemand account.

1. Create a SureTrack account, see Creating an Account on page 186.
2. Log into ProDemand or ShopKey Pro with your applicable username and password.
3. Select your username (near the top right), and then from the dropdown menu select Profile Manager.
4. Select Add a technician.
5. Enter the email associated with your SureTrack account.

15.6 Creating a SureTrack Account

15.6.1 Use Requirements

To access SureTrack you must:

- Create a SureTrack Account, see Creating an Account on page 186.
- Have a current SureTrack Authorization Code, see Finding your SureTrack Authorization Code on page 189.
- Have a Wi-Fi Internet connection.
- Have the current software version installed on the diagnostic tool. See your Snap-on Representative for information.

15.6.2 Creating an Account

If you are a new member (do not have an existing SureTrack account), you will need to complete the online registration before you can use SureTrack. Use the following procedure to create an account.

2. Follow the sequential illustrated instructions below.
Creating a SureTrack Account

1. Enter all required information.

2. Create

3. Cancel

4. Create

Success

Congratulations! Your account has been created.

This account can be used to contribute to the community and manage your profile.

To link this account to your shop, have your shop add you in Profile Manager.

5. Done

Choose 3 security questions.

6. Username

7. Forgot password? Click here to reset.

8. Login

9. Choose 3 security questions.

10. Submit

Choose a question...
Create a SureTrack Account

11. Find the SureTrack Authorization Code on your sales receipt. 12 digit alpha-numeric code (e.g. 123ABCAP4-US)

12. Enter the SureTrack Authorization Code

13. Enter all required information (scroll down)

14. Click “Save”

15. Close the browser window or tab.

16. Open www.shopkeypro.com and login

Username
Password
Forgot password? Click here to reset.
Remember username & password

ShopKey5.com Users: Click the “Login” button above and enter your ShopKey5 access ShopKey Pro
Don’t know your username and password? Click here for information on retrieving them.
15.7 Finding your SureTrack Authorization Code

When you purchase a software upgrade, or qualifying platform from your Snap-on Representative, you will receive a SureTrack authorization code. The authorization code is printed on your sales receipt. Authorization codes are 12 digit alpha-numeric codes (e.g. 123ABCAP4-US).

NOTE

After obtaining a new software upgrade you will receive a new SureTrack authorization code. Software upgrades can be installed using the ShopStream Update Tool program installed on your diagnostic tool.

Each time you purchase a diagnostics software upgrade you will be provided a new SureTrack authorization code. The authorization code will expire shortly after the release of the next concurrent software upgrade. To log in with a new authorization code, see Logging In with new Authorization Code (expired account) on page 185.

15.8 About Upgrade Reminder Messages

As a reminder to keep your software current and retain your access to SureTrack, software upgrade reminder messages will display periodically on the diagnostic tool when new software upgrades are available (Figure 15-23). To purchase software upgrades, or join the software subscription program, see your Snap-on Representative.

Selecting OK will close the message box until the beginning of the next month when it will reappear to remind you again. Selecting Snooze 1 Week will close the message box for approximately one week and then it will re-appear.

Figure 15-23 Software Upgrade Reminder Message

15.9 About SureTrack Status Messages

Depending on your software version and connection status the following messages may appear in the SureTrack status bar:

- **SureTrack Content May Be Available!** - indicates SureTrack content may be available, however you are not currently connected to the SureTrack database. This message may be caused by a Wi-Fi connection issue or if you do not have the current software upgrade installed.

- **Loading content from SureTrack** - indicates SureTrack information is being updated from the SureTrack database.

- **A new diagnostic software upgrade is available. See your sales representative for details.** - indicates your access to SureTrack will be expiring soon and you should contact your sales representative to purchase the current software upgrade.

- **Your SureTrack access has expired. See your Snap-on representative to renew.** - indicates your access to SureTrack has expired and you should contact your sales representative to purchase the current software upgrade.

- **Verified parts replacement data not available.** - indicates repair and/or diagnostic information is not available at this time for the identified vehicle.

- **Network not available.** - indicates that you have a connection problem with your wireless network.
15.10 Introduction to ShopKey Pro

Using the SureTrack & Repair Information icon you can login to the online repair information services ShopKey® Pro or Pro Demand®, and SureTrack.

This section describes ShopKey Pro and some of it’s features. For more information, contact your Snap-on representative, or visit the following web pages:

• Snap-on Diagnostics ShopKeyPro Page
• ShopKeyPro.com
• ShopKey Pro Training (sktraining.net)

For information on Pro Demand, visit ProDemand.com

NOTE

ShopKey Pro and ProDemand are online subscription services intended for commercial shop use (individual subscriptions are not available). If you work for a shop that has an active ShopKey Pro or ProDemand membership, and have a Wi-Fi Internet connection on your diagnostic tool, you can access these services directly from your diagnostic tool.

15.12 What is ShopKey Pro?

At it’s core, ShopKey Pro is a complete repair information system (application) that is comprised of multiple modules providing you easy access to OEM repair, estimating, maintenance, and real-world experience-based information, and more, all from a single-source.

Here are a few features that ShopKey Pro has to offer:

ShopKey Pro Modules:

• **1Search™** - Delivers complete OEM and experience-based information together in a single lookup search for diagnostic trouble codes, components, or symptoms. You get complete OEM information from ShopKey Pro, and the detailed parts replacement records, Real Fixes from SureTrack®. SureTrack is a comprehensive source of expert knowledge for professional technicians, combining diagnostic experience and detailed parts replacement records, all wrapped in an interactive community.

• **Estimate Guide** - Build accurate, dependable and profitable estimates with the only OEM repair information system integrated within our ShopKey Shop Management Software.

• **Quotes** - Allows you to customize your estimates by editing labor times, adding parts manually, adding or deleting lines, and moving lines in the estimate to group items together.

• **Maintenance** - Provides different types of maintenance information, by mileage, time interval or indicator-based, so you can quickly see all tasks relevant to your current vehicle, and build (and print) a maintenance checklist.

• **SureTrack® Community** - A forum-based application that connects you with a community of other professional technicians to find and share information, ask questions, and provide your own tips.

• **Service Manual** - Provides access to OEM service manuals and related service information

• **Component Search** - Allows you to easily search for vehicle components by category or by alpha lookup.
More ShopKey Pro Features:

- **Safety Recalls, OEM Campaigns and TSBs** - Access the most accurate and up-to-date database of TSBs available (most available within two weeks of OEM publication). This information is automatically displayed based on the identified vehicle and component search, so you don’t have to perform separate searches.

- **Wiring Diagrams** - Full-color diagrams are easy to follow, and the circuit trace feature allows you to highlight a complete circuit from end-to-end to quickly identify the specific circuit you are testing.

- **Verified Parts Replacement Records** - Quickly see which parts are most frequently used to complete the repair based on the code or symptom.

- **Optimized for Tablets** - Use your Android and Apple tablet devices to access your repair, diagnostic and maintenance information.

- **Diagnostics** - Enter a DTC to find the information needed to diagnose and fix the problem, including code descriptions, setting conditions, component illustrations and test procedures.

- **ShopKey Pro Vintage** - ShopKey Pro Vintage includes an extensive library repair information, along with wiring diagrams, and other information for vehicles back to 1974.

15.13 Shopkey Pro FAQ’s

15.13.1 How do I access ShopKey Pro?

ShopKey Pro is an optional web-based subscription service intended for commercial shop use (individual subscriptions are not available - restrictions apply). To purchase ShopKey Pro commercially, visit shopkeypro.com, then from the ShopKey Pro web page select the **Buy Now** tab (Figure 15-6) and follow the directions.

You may also contact your sales representative for purchase details.
15.13.2 How do I change the default application?

ShopKey Pro is the default application that opens when the SureTrack & Repair Information icon is selected from the Home screen on your diagnostic tool.

If needed, you can change the default application to ProDemand, by selecting the menu icon (Figure 15-25), then select ProDemand.

15.13.3 I work in a shop that has ShopKey Pro or Pro Demand, how do I link my diagnostic tool to it?

NOTE
To use this feature and link to a ShopKey Pro or ProDemand account, you must have an active SureTrack account. To create a SureTrack account, see Creating an Account on page 186.

If you wish to access your shops’ ShopKey Pro or ProDemand account from your diagnostic tool:

1. Have the shop administrator (or applicable), log into ProDemand or ShopKey Pro.
2. Select the username (near the top right), and then from the dropdown menu select Profile Manager, then log in again to the Shop Profile Manager.

 The Shop Profile Manager window will open (Figure 15-26),

3. Select Add a technician (Figure 15-26).
4. Enter the email address that you used when you created your SureTrack account for the diagnostic tool.
5. Close the Shop Profile Manager window to save and exit.

Now, when you select the Repair Information icon from the Home screen on your diagnostic tool, you will connect to your shops’ ShopKey Pro or ProDemand account.
Introduction

This section describes the ShopStream Update Tool (SST), a maintenance program that automatically keeps your diagnostic software up-to-date.

SST downloads and installs:
- Diagnostic software upgrades
- Diagnostic software updates
- SST program updates

Whenever the diagnostic tool is connected to the Internet, the SST automatically checks for new software updates. This automatic check also occurs every time the diagnostic tool is turned on. If a software update is available, the SST will download it.

The SST is a low priority program that only downloads software updates when unused bandwidth is available. If other programs are running that communicate over the Wi-Fi network, such as a browser or instant messaging, the download may be temporarily suspended. This allows you to continue normal diagnostic tool operation, without interruptions or loss of performance.

NOTE

As an alternative to downloading software in the background, you can select the Fast Download from the update status window, see Step 3 in Manual Software Download for details.

16.1 Terminology

The following terms are used in this section and throughout this manual as described below:
- Software Upgrade - a new diagnostic software version. Software upgrades include new and enhanced coverage and features.
- Software Update - a service release “update” for an existing diagnostic software version.

For clarity, throughout this document the term “software update(s)” will be used to collectively describe “software updates, upgrades and SST program updates” using the SST, except where noted.

16.2 Main Topic Links

- Terminology page 193
- Basic Operation page 194
- End User License Agreement page 195
- Manual Software Download page 195
- Installing Software Updates page 197
- Installing Software Upgrades page 198
16.3 Basic Operation

The SST program is normally running in the Windows background and available from the Windows system tray. The program can be accessed as follows:

- **SST icon in the Windows system tray** - opens the SST program menu.
- **SST program selection from the Windows “All Programs” or “Startup” menus** - starts the SST program and adds the SST icon to the Windows system tray.

NOTE

If necessary, select the expand arrow to see the SST icon in the system tray.

Selecting the SST icon from the system tray provides the following menu choices:

- **Check for Updates** - Allows you to manually check for software updates anytime. See Manual Software Download on page 195.
- **Show Progress** - allows you to check the status of an active download.
- **About** - displays the SST program software version number
- **Exit** - closes the SST program
16.4 End User License Agreement

Before software installation at initial purchase, and before all subsequent software updates/upgrades installations End User License Agreement (EULA) acceptance is required.

IMPORTANT

Use of Software is governed by the terms and conditions of the End User License Agreement. The diagnostic tool should not be initially operated until the End User License Agreement is read. Use of the device acknowledges your acceptance of the End User License Agreement. The Snap-on Incorporated Software End User License Agreement is available at: https://eula.snapon.com/diagnostics

To Accept: at the screen prompt (Figure 16-3) click the checkbox on the left side of the window, and then select Agree and Continue. The software will be installed automatically.

Figure 16-3 below represents a typical EULA acceptance agreement screen.

To Decline: at the screen prompt (Figure 16-3) select I Decline. A confirmation message is displayed providing options to Go Back or Exit the software installation (Figure 16-4).

Figure 16-4 Typical EULA acceptance screen

16.5 Manual Software Download

This section describes the basic procedures for manually downloading software updates and upgrades.

 Normally, the SST will automatically detect and download software. If necessary, use the following procedure to manually check for and download software.

NOTE

It is recommend that you download software upgrades when not actively using the diagnostic tool. Download times will vary as they are dependent on the file size of the upgrade (some upgrades may exceed 3Gb) and your connection speed. It is suggested that you start the download at the end of your day and let it run overnight. It is also suggested that you ensure a download of this size is within the available data allowance of the Internet connection or data plan being used. For software upgrade installation instructions, see Installing Software Upgrades on page 198.
To manually download software:

1. Select the SST icon in the system tray to open the menu (Figure 16-5).

2. Select Check for Updates from the menu.
 A series of message boxes will display as the SST searches for updates (Figure 16-6).

 Once the search is complete, one of two results are expected:
 - If no updates are found, the message box closes and a "No updates available" message displays.
 - If updates are found, they will automatically begin to download (Figure 16-7).

 To view the update status window (Figure 16-7), select Show Progress from the SST icon menu (Figure 16-5).

 The percentage status bar may not always be displayed while downloading (Figure 16-7).

3. During an active download, three options are available from the update status window (Figure 16-7):
 - **Fast Download**—selecting Fast Download provides the option to either initiate a faster download, or continue downloading the background. If Fast Download is selected, it may adversely affect diagnostic tool performance, only choose if you are not actively using the Diagnostic Suite.
 - **Minimize**—closes the message box. The download continues as a background task and the diagnostic tool can be used normally.
 - **Cancel**—stops and cancels the download and closes the message box. If you select Cancel, and choose to re-start the download again, the download will start from the beginning.

4. Once the download completes, it must be installed. See the applicable instructions for Installing Software Updates on page 197 or Installing Software Upgrades on page 198.
For SST program updates (only) - if you have the Automatic Update setting “on”, the update will be installed automatically. See Automatic Update setting in Basic Operation on page 194 for additional information.

If you have the Automatic Update setting “off”, the SST program must be manually installed. See Installing Software Updates on page 197.

NOTE

If the Internet connection is interrupted during a download, the download is suspended and a “network unavailable” message displays. The message disappears and the download resumes automatically once the Internet connection is restored.

16.6 Installing Software Updates

When a software update is ready for installation, an installation update message will appear (Figure 16-8). You can select the message or the SST icon from the system tray at anytime to start the software update installation process.

To install a software update:

1. Select the software update available message (Figure 16-8), or the SST icon from the system tray.

 A software update installation window will display (Figure 16-9).

 ![Figure 16-9 Typical update installation window](image)

2. Select an installation option to continue:
 - Install Now—starts the software update installation. Proceed to step 3.
 - Install Later—closes the message. The message will reappear at a later time as a reminder.

 NOTE

 If **Install Later** is chosen, you can select the SST icon from the system tray to restart the installation at anytime.

3. Close the ShopStream Diagnostic Suite application. The ShopStream Diagnostic Suite should remain closed until the software installation has completed.

4. Follow the on-screen instructions to complete the installation.

5. After the installation is complete, open the ShopStream Diagnostic Suite application.

6. If applicable, select Scanner from the Home Screen. If a CSM firmware update has been received, a “Compact Scan Module firmware update” message will display. Proceed to Firmware Updates on page 38.
If the Scanner opens normally and no update message is displayed, proceed to step 7.

7. Turn the diagnostic tool off, then turn it on (re-boot).

8. From the toolbar, select **Menu > Help > Version Info** to confirm the new version number is installed.

16.7 Installing Software Upgrades

NOTE

It is recommended that you perform software upgrade installations Monday – Friday, during business hours to ensure customer care representatives are available for support. The installation will take approximately 30 minutes. If the installation is interrupted, contact Snap-on Diagnostics Customer Care for assistance. See the Snap-on contact information at the front of this manual.

NOTE

If applicable, before installing a software upgrade, have your CSM and USB cable available. The software upgrade may include firmware updates that need to be installed to the CSM.

To install a software upgrade:

1. Select the software upgrade available message (**Figure 16-10**), or the SST icon from the system tray.

 ![Figure 16-10](image)

 Figure 16-10 Typical upgrade installation message

 An upgrade installation window will display (**Figure 16-11**).

 ![Figure 16-11](image)

 Figure 16-11 Typical upgrade installation window

2. Select an installation option to continue:

 - **Upgrade Detail**—opens a PDF file describing the details of the software upgrade, including any accessories that may be required.
 - **Install Now**—starts the software upgrade installation. Proceed to step 3.
 - **Install Later**—closes the upgrade message. The upgrade available message reappears at a later time as a reminder.

NOTE

If **Install Later** is chosen, you can select the SST icon from the system tray to restart the installation at anytime.

3. Close the **ShopStream Diagnostic Suite** application. The ShopStream Diagnostic Suite should remain closed until the software installation has completed.

4. Follow the on-screen instructions to complete the installation.

5. After the installation is complete, open the **ShopStream Diagnostic Suite** application.

6. If applicable, select **Scanner** from the Home Screen, if a CSM firmware update has been received, a “Compact Scan Module firmware update” message will display, proceed to **Firmware Updates on page 36**.

 - If the Scanner opens normally and no update message is displayed, proceed to step 7.
7. Turn the diagnostic tool off, then turn it on (re-boot).
8. From the toolbar, select **Menu > Help > Version Info** to confirm the new version number is installed.
9. To activate your SureTrack access that comes with your new software upgrade, see *ShopStream Update Tool (SST)* on page 193.
Section 17
The Snap-on® Cloud

This diagnostic tool includes a built-in feature that automatically transfers code scan reports, screenshots and camera photos to the Snap-on Cloud (ALTUSDRIVE.com).

The Snap-on Cloud is a mobile-friendly cloud-based application designed for technicians to store, organize and share information.

See Code Scan (with Vehicle System Report) on page 49 for information on using Code Scan.

Main Topic Links
- Registration - Getting Started page 200
- Using the Snap-on Cloud page 203
 - Snap-on Cloud - New User Registration page 201
 - Snap-on Cloud - ShopKey Pro or SureTrack User Setup page 202
 - Logging on the Snap-on Cloud (registered user) page 203
 - Navigating Snap-on Cloud (Toolbars) page 204
 - My Files page 204
 - Search page 208
 - Shop Files page 208
 - Favorites page 210
 - Profile page 210
 - Sharing/E-mail an Individual File (Link icon) page 206
 - Using Profile Manager page 212
 - My Network page 211
 - Logging Out of the Snap-on Cloud page 214

17.1 Key Features
- Automatically transfer code scan reports, screenshots and camera photos to the Snap-on Cloud.
- Access and manage your Snap-on Cloud account, using your diagnostic tool, mobile device or PC.
- Share/send files via e-mail, or other mobile apps.
- Tag files (attach a descriptive key-name) to help you organize and search files.
- Use the Search function to quickly find files by Tag, Description and Title.

17.2 Important Notes
- To use the Snap-on Cloud, account setup and diagnostic tool Wi-Fi connection is required.
- The Snap-on Cloud is continuously monitored for inappropriate content. Abuse (as determined by moderator) will result in account deactivation.

17.3 Registration - Getting Started
To use the Snap-on Cloud:
- The diagnostic tool must be connected to a Wi-Fi network
- Account registration is required online
 - If you are a new user, you will need to create a new account, see Snap-on Cloud - New User Registration.
 - If you already have a ShopKey® Pro or SureTrack® account, see Snap-on Cloud - ShopKey Pro or SureTrack User Setup.

![NOTE]
Account setup is only required one time.
17.3.1 Snap-on Cloud - New User Registration

If you are a new user, follow these steps to register and create a new account:

NOTE

If you are a Shop Key Pro or SureTrack user, see Snap-on Cloud - ShopKey Pro or SureTrack User Setup on page 202.

1. Connect the diagnostic tool to a Wi-Fi network, see Wi-Fi Setup on page 12.
2. From the Home screen, select **System Settings > Get Connected**, and write down the Serial Number, PIN and Code that are displayed (Figure 17-1).

NOTE

The PIN and Code numbers will change each time you view the Get Connected screen (Figure 17-1). This is normal, any displayed set of PIN and Code numbers may be used to register.

3. Select the weblink (Figure 17-1) to open the Login page.
4. Select **Create Individual Account**.
5. Enter the required information and create a **Username** and **Password**, then select **Create**.
6. At the “Success” confirmation screen, select **Done**.
7. Log in using your **Username** and **Password**.
8. Answer the security questions, then select **Submit**.
9. From Technician Profile Manager select the **Device Management** tab.
10. Select **Add Device**, then enter your **Serial Number**, **PIN**, **Code**, and **Device Name** and select **Save** when done.
11. Log out of Profile Manager and close the window.
12. Turn the diagnostic tool off, and then on (reboot).
13. To login and use the Snap-on Cloud, see Using the Snap-on Cloud on page 203.

Your diagnostic tool is now registered to your Snap-on Cloud online account. Files will be automatically sent (only when connected to Wi-Fi) to your online account from the device.

NOTE

If the device is not connected to a Wi-Fi network, files will not be sent to your Snap-on Cloud account. Wi-Fi connection is required to upload files to the Snap-on Cloud.
17.3.2 Snap-on Cloud - ShopKey Pro or SureTrack User Setup

If you already have a ShopKey Pro or SureTrack account, follow these steps to register and setup your Snap-on Cloud account:

From a PC or mobile device:

1. Connect the diagnostic tool to a Wi-Fi network, see Wi-Fi Setup on page 12.
2. From the Home screen, select System Settings > Get Connected, and write down the Serial Number, PIN and Code that are displayed (Figure 17-2).

NOTE

The PIN and Code numbers will change each time you view the Get Connected screen (Figure 17-2). This is normal, any displayed set of PIN and Code numbers may be used to register.

3. Select the weblink (Figure 17-2) to open the Login page.
4. Select Login (upper right screen).
5. Log in using your ShopKey Pro or SureTrack Username and Password.
6. Open the Profile Manager (additional login may be required).
7. From the Device Management tab, select Add Device.
8. Enter your Serial Number, PIN, Code, and Device Name.
9. Log out of Profile Manager and close the window.
10. Turn the diagnostic tool off, and then on.
11. To login and use the Snap-on Cloud, see Using the Snap-on Cloud on page 203.

Your diagnostic tool is now registered to your Snap-on Cloud online account. Files will be automatically sent (only when connected to Wi-Fi) to your online account from the device.

NOTE

If the device is not connected to a Wi-Fi network, files will not be sent to your Snap-on Cloud account. Wi-Fi connection is required to upload files to the Snap-on Cloud.
17.3.3 Snap-on Cloud Get Connected Screen

From the Home screen, selecting **System Settings > Get Connected**, allows you view the diagnostic tool serial number, PIN and Code needed to register (**Figure 17-3**). Select the weblink to open the Login page (**Figure 17-3**).

NOTE

The PIN and Code numbers will change each time you view the Snap-on Cloud Get Connected screen (**Figure 17-3**). This is normal, any displayed set of PIN and Code numbers may be used to register.

17.4 Using the Snap-on Cloud

To use the Snap-on Cloud:

- A Snap-on Cloud account is required, see **Registration - Getting Started on page 200**.
- The diagnostic tool must be connected to a Wi-Fi network, see **Wi-Fi Setup on page 12**.

17.4.1 Logging on the Snap-on Cloud (registered user)

Logging in to Snap-on Cloud (registered user):

1. From the Home screen select the **Snap-on Cloud** icon (**Figure 17-4**). If using your mobile device or PC visit ALTUSDRIVE.com.
2. Select the **Login** icon (**Figure 17-4**).
3. Log in using your **Username** and **Password** (*Figure 17-5*).

17.4.2 Navigating Snap-on Cloud (Toolbars)

The upper and lower toolbars are available from all screens.

The upper toolbar includes a menu icon (right side) (*Figure 17-6*). This menu allows you to share your entire gallery, see *Sharing all Files (Share My Gallery)* on page 207.

The lower toolbar (*Figure 17-7*) includes the following links:

- **Favorites**, see page 210
- **Profile**, see page 210

Figure 17-6

Figure 17-7

17.4.3 My Files

My Files displays all the files uploaded from the diagnostic tool (*Figure 17-9*). Each file is displayed in a navigation card.

Figure 17-7

Figure 17-8
File Detail (Tags)

As shown in Figure 17-11 selecting (touching) a file from My Files opens the File Detail card. Selecting the file again opens that file in a new browser tab.

NOTE

Opening the file in a separate browser tab may allow you to use the browser viewer tools to print or download the file. This feature may not be available in all browsers.

Selecting a file opens the File Details. The File Detail screen allows you to edit file metadata. See File Detail (Tags) on page 205.
The following describes File Detail card features.

1— Back Icon - Returns to My Files
2— File Name (user entered searchable text) - Select the file name to open the editor. Enter text (alphanumeric) in the field as desired.
3— Your Account Username (and timestamp) - See Account on page 212 for additional information. The timestamp indicates the date/time the file posted on ALTUSDRIVE.com
4— Description (user entered searchable text) - Enter text (alphanumeric) in the description field as desired.
5— Known Good / Bad Checkboxes (user defined and searchable) - Selecting a checkbox automatically creates a tag (e.g. #good) and is displayed in the Active Tag(s) field.
6— Tag (user entered searchable text) - Enter text (alphanumeric) in this field as desired. Tagging a file allows you to associate (tag) descriptive text to a file. Tagging can be used to associate multiple files with a common tag. The tag text then can be used when performing a search to find all files with the same tag. Each text entry (word) that is separated by a space (return) is added as a tag, and is displayed in the Active Tag field.

7— Active Tag(s) - Displays the active tag(s). Tags can include the “good” or “bad” entry from the Known Good / Bad checkboxes, and text entered in the file Name, Description and Tag fields. Each entry is automatically preceded with the “#” symbol.

Sharing/E-mail an Individual File (Link icon)

To share a file:

1. Select the Link icon (Figure 17-12) on the file card.

2. Choose an option how to send the file (Figure 17-12).

NOTE

Some selections may be grayed out or not shown, indicating the option is not supported on your device/system.

- Select a Link from your Network - see My Network on page 211 for information on how to add contacts.
- Send via SMS (Short Message Service) - this option is used with supporting mobile devices, and will typically open a new text message with the link attached, ready to be sent.
- Send via Email - your system default e-mail application will open a new message with the link attached, ready to be sent.
- Copy to Clipboard - open your (e-mail, text, social media, etc.) application and paste the URL into a message to share with others.

The pasted URL link that is sent only displays:
- The File
- File Name
- Your User Name
- Date File was posted
- File Description
Sharing all Files (Share My Gallery)

To share your entire gallery (all files in My Files):

1. Select the Menu icon (Figure 17-15) from the upper toolbar.

![Figure 17-14](https://altusdrive.com/Hom)

2. Select Share My Gallery.

3. Select Copy to Clipboard (Figure 17-15) from the pop-up window.

![Figure 17-15](https://technotebook.asl)

4. Open your (e-mail, text, social media, etc) app and paste the URL into a message to share with others.

The URL link that is sent is only displays:

- The Files
- File Names
- Your User Name
- Date the Files were posted
- Files Descriptions
17.4.4 Search

The Search screen allows you to perform text searches on all uploaded files and view the results.

To search for a specific file or set of files, enter a search term in the search box and select the magnifying glass icon (Figure 17-16) (or press Enter).

![Figure 17-16](image)

Search queries the following to find results:

- **File Name** - name can be either system assigned or user assigned
- **Known Good / Bad Checkboxes** - selecting a checkbox automatically creates a searchable tag (e.g. good or bad)
- **Description** - user entered text
- **Tag** - user entered text

See File Detail (Tags) on page 205 for additional information on the above “user entered” text.

17.4.5 Shop Files

Shop Files allows you to share a file(s) with others via e-mail, text, social media, etc, from a permanent location in the cloud. Unlike sharing a file(s) from My Files, the link is permanent and will work, even if the original file is deleted.

Shop Files links are useful when sharing a file with a customer that is not a registered Snap-on Cloud user, that just needs to see the file, and/or may need access to the file in the future.

Note: The file details displayed in a shared link will be different depending if the message recipient is logged into the Snap-on Cloud or not. If the recipient is not logged in, only limited details are displayed.
2. Select an option (Figure 17-19) from the pop-up window.

NOTE
Some selections may be grayed out or not shown, indicating the option is not supported on your device/system.

![Figure 17-19](image)

- **Select a Link from your Network** - see *My Network on page 211* for information on how to add contacts.
- **Send via SMS** (Short Message Service) - this option is used with supporting mobile devices, and will typically open a new text message with the link attached, ready to be sent.
- **Send via Email** - your system default e-mail application will open a new message with the link attached, ready to be sent.
- **Copy to Clipboard** - open your (e-mail, text, social media, etc.) application and paste the URL into a message to share with others.

To share all files in Shop Files:

1. From Shop Files, select the **Menu** icon (Figure 17-20) from the upper toolbar.

![Figure 17-20](image)

2. Select **Share My Shop Files**.
3. Select **Copy to Clipboard** (Figure 17-21) from the pop-up window.

![Figure 17-21](image)

4. Open your (e-mail, text, social media, etc) application and paste the URL into a message to share with others.
17.4.6 Favorites

The Favorites screen displays all the files selected as favorites (Figure 17-22).

To set a file as a "Favorite", select the Favorite icon (star symbol) to highlight the icon.

<table>
<thead>
<tr>
<th>Description</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorite (on)</td>
<td>🌟</td>
</tr>
<tr>
<td>Favorite (off)</td>
<td>🌟</td>
</tr>
</tbody>
</table>

The Favorites icon can be selected/deselected at anytime when displaying files.

17.4.7 Profile

Select Profile (Figure 17-23) to open the Profile Manager menu.
The Profile Manager Menu screen (Figure 17-24) allows you to:

- Open Profile Manager, see Using Profile Manager on page 212
- Logout of the Snap-on Cloud, see Logging Out of the Snap-on Cloud on page 214
- Add others to your Network, see Logging Out of the Snap-on Cloud on page 214
- Open online Help, to assist in Registering Your Device

My Network

Selecting My Network (Figure 17-24) allows you to add others to your file sharing network. Enter the contacts name, phone number and/or email at the prompt. Add as many contacts as you need.

The Contact Names you enter will appear in the “Share Link” pop-up screen (Figure 17-26) when you select the Link icon (Figure 17-25).
Using Profile Manager

To open the Profile Manager screen, select Profile from lower toolbar, then select Open Profile Manager (Figure 17-24).

NOTE

Profile Manager opens a new browser tab. To return to the Snap-on Cloud after logging out of Profile Manager, you must select the Snap-on Cloud Home Page browser tab.

Enter your **Username** and **Password** at the Login screen.

If you are a SureTrack user, please note that Profile Manager is the same as your SureTrack Profile Manager. Any changes you make will also be reflected in your SureTrack account.

Profile Manager includes five tabbed categories to help you manage your account information:

- **Account** on page 212
- **Personal Information** on page 213
- **Expertise** on page 213
- **Profile Picture** on page 213
- **Device Management** on page 213

Account

This screen manages the following account information (Figure 17-27):

- Authorization Key (not required for Snap-on Cloud account registration)
- Account Expiration Date
- Shop Nickname
- Email
- Username
- Password
Personal Information

This screen manages the following personal account information *(Figure 17-28)*:

- First Name
- Last Name
- City
- State
- Zip Code

Expertise

(SureTrack users only) - Select the vehicles from the list that you have expertise with. When a question is asked within the SureTrack community about one of the selected vehicles, you will receive an email with the details and a link back to the question.

Profile Picture

This screen allows you to personalize your profile picture, by selecting one of the provided images.

Device Management

This screen manages devices associated with your account *(Figure 17-30)*:

Select **Add a Device** to setup and add an authorized device.

Enter the device:

- **Serial Number** - serial number of the device
- **PIN** - specific PIN associated to the device
- **Code** - authorization code specific to the device
- **Device Name** - user defined name
When finished select **Save** to save and link the device to your account.

![Technician Profile Manager](image1)

Figure 17-30

Logging Out of Profile Manager

Select the **logout** icon (upper right screen) to log out of Profile Manager (**Figure 17-31**).

![Technician Profile Manager](image2)

Figure 17-31

NOTE

Profile Manager opens a new browser tab. To return to the Snap-on Cloud after logging out of Profile Manager, you must select the Snap-on Cloud Home Page browser tab.

Logging Out of the Snap-on Cloud

To log out of the Snap-on Cloud, select **Profile** from lower toolbar, then select **Logout** (**Figure 17-32**).

![Profile Manager Logout](image3)

Figure 17-32
Introduction

This section describes typical maintenance and care procedures for your diagnostic tool and components.

Main Topic Links

- Cleaning the Diagnostic Tool page 215
- Cleaning the Touch Screen page 215
- Cleaning the Compact Scan Module (CSM) page 215
- Battery Pack Replacement page 217
- Battery Pack Disposal page 217
- Screen Protector Installation page 218
- Stylus Tip Replacement (Touch Screen) page 219

18.1 Cleaning

18.1.1 Cleaning the Diagnostic Tool

Periodically perform the following tasks to keep your diagnostic tool in proper working order:

- Check the housing, cables and connectors for dirt and damage before and after each use.
- At the end of each work day, wipe the diagnostic tool housing, cables and connectors clean with a damp cloth.

IMPORTANT

Do not use any abrasive cleansers or automotive chemicals on the diagnostic tool.

18.1.2 Cleaning the Touch Screen

The touch screen can be cleaned with a soft cloth and a mild window cleaner.

IMPORTANT

Do not use any abrasive cleansers or automotive chemicals on the touch screen.

18.1.3 Cleaning the Compact Scan Module (CSM)

When using the CSM, always:

- Check the housing, wiring, and connectors for dirt and damage before and after each use.
- At the end of each work day, wipe the housing, wiring, and connectors clean with a slightly damp cloth.
18.2 Battery Pack

18.2.1 Safety

Follow all safety guidelines when handling the battery pack.

- **WARNING**

 Risk of electric shock.
 - Prior to recycling the battery pack, protect exposed terminals with heavy insulating tape to prevent shorting.
 - Disconnect all test leads and turn diagnostic tools off before removing the battery pack.
 - Do not attempt to disassemble the battery or remove any component projecting from or protecting the battery terminals.
 - Do not expose the diagnostic tool or battery pack to rain, snow, or wet conditions.
 - Do not short circuit the battery terminals.

 Electric shock can cause injury.

- **WARNING**

 Risk of explosion.
 - The Lithium battery is factory replaceable only, incorrect replacement or tampering with the battery pack may cause an explosion.

 Explosion can cause death or serious injury.

IMPORTANT

The battery pack contains no user serviceable components. Tampering with the battery pack terminals or housing will void the product warranty.

Keep the following in mind when using and handling the battery pack:

- Do not short circuit battery pack terminals.
- Do not immerse the diagnostic tool or battery pack in water, or allow water to enter the diagnostic tool or battery pack.
- Do not crush, disassemble, or tamper with the battery pack.
- Do not heat the battery pack to over 100°C (212°F), or dispose of it in a fire.
- Do not expose the battery pack to excessive physical shock or vibration.
- Keep the battery pack out of reach of children.
- Do not use a battery pack that appears to have suffered abuse or damage.
- Charge the battery pack in the appropriate charger only.
- Do not use a battery charger that has been modified or damaged.
- Use the battery pack for the specified product only.
- Store the battery pack in a cool, dry, well ventilated area.

NOTE

The battery pack should be used within a short period of time (about 30 days) after charging to prevent loss of capacity due to self-discharging.

If long-term storage of the battery pack is necessary, it should be stored in a in a cool, dry, well ventilated place with a 30 to 75 percent state of charge to prevent loss of characteristics.

To prolong the life of your battery, turn off the diagnostic tool when not in use. The diagnostic tool has a built in charger that recharges the battery on demand whenever it is connected to a power source.
18.2.2 Battery Pack Replacement

If the battery pack no longer holds a charge, contact your sales representative to order a new one.

IMPORTANT

Replace the battery pack with a Snap-on replacement battery pack only.

To replace the battery pack:

1. Loosen the two battery pack screws.
2. Carefully tilt the battery pack up from the bottom, and then remove it.
3. In the opposite manner of removal; insert the new battery pack into position, then tilt it down into place making sure it is fully seated.

NOTE

Do not overtighten the battery pack screws.

4. Tighten the two battery pack screws.

18.2.3 Battery Pack Disposal

Always dispose of a lithium-ion battery pack according to local regulations, which vary for different countries and regions. The battery pack, while non-hazardous waste, does contain recyclable materials. If shipping is required, ship the battery pack to a recycling facility in accordance with local, national, and international regulations.

- For additional information within the United States of America contact: Rechargeable Battery Recycling Corporation (RBRC) at www.call2recycle.org
 Phone - 800 822-8837
- For additional information within Canada contact: Rechargeable Battery Recycling Corporation (RBRC) at www.call2recycle.ca
 Phone - 888 224 9764

Products bearing the WEEE logo (Figure 18-2) are subject to European Union regulations.

NOTE

Always dispose of materials according to local regulations.

Contact your sales representative for details.
18.3 Screen Protector Installation

Touch screen protectors are available as optional equipment (contact your sales representative to order). The following procedure describes typical installation procedures.

Items recommended for installation:
- Microfiber type cloth (lint-free)
- Flexible straight edged tool (e.g. small squeegee, plastic card)
- Cellophane tape

To install a screen protector:

NOTE

Cleanliness is the most important factor during the installation of the screen protector. The following tips are provided to assist in the installation:

- Clean your hands thoroughly.
- Clean the touch screen thoroughly using a microfiber type cloth, removing all dirt, dust, grease, fingerprints etc. See Cleaning the Touch Screen on page 215 for additional information.
- Work in a well lit area.
- Minimize dust; work in an area with minimal air movement, turn off fans or air conditioning etc.

1. Thoroughly clean and dry the touch screen. See Cleaning the Diagnostic Tool on page 215 for additional information.
2. Remove the rear mask (Figure 18-3) from the screen protector.
3. Carefully align the edge of the protector with the edge of the screen, and slowly allow the screen protector to lie flat on the screen (Figure 18-4).
4. Once the protector is in place, use a microfiber cloth to work out any air bubbles.

NOTES

To remove air bubbles, slowly work from the inside towards the edges. If large air bubbles are trapped, it may be easier to carefully peel back the protector and re-apply.

If air bubbles are persistent, it is an indication that the screen and/or protector are not clean.

If visible dust is trapped under the protector, peel back the protector and use the adhesive side of a small piece of cellophane tape to remove the dust.
18.4 Stylus Tip Replacement (Touch Screen)

Periodically the capacitive stylus tip may need to be replaced. There are two styles of removable stylus tips.

Style “A” (*Figure 18-5*) - To remove, unthread the tip counterclockwise. To install a new stylus tip, thread it on clockwise until seated.

Style “B” (*Figure 18-6*) - To remove, unthread the collar counterclockwise. To install a new stylus tip, remove the old tip from the shaft and install a new tip, then thread the collar on clockwise until seated.

Stylus tips are available as optional equipment (contact your sales representative to order).

IMPORTANT

Do not overtighten the stylus tip.
FCC Compliance Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

CAUTION

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.

FCC RF Radiation Exposure Statement

1. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
2. This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This device was tested for typical lap held operations with the device contacted directly to the human body to the back side of the Display Unit. To maintain compliance with FCC RF exposure compliance requirements, avoid direct contact to the transmitting antenna during transmitting.
3. According to FCC 15.407(e), the device is intended to operate in the frequency band of 5.15GHz to 5.25GHz under all conditions of normal operation. Normal operation of this device is restricted to indoor use only to reduce any potential for harmful interference to co-channel MSS operations.

IMPORTANT INFORMATION

Operating System (OS)

Your ZEUS® delivers exclusive coverage, more capabilities, superior performance and runs on a special version of the Microsoft® Windows® 10 operating system. DO NOT install another operating system on this diagnostic tool. The modification or installation of a different OS or OS version will damage the diagnostic tool and void its warranty.